BIG-bench 开源项目使用教程

BIG-bench 开源项目使用教程

BIG-bench项目地址:https://gitcode.com/gh_mirrors/bi/BIG-bench

项目介绍

BIG-bench(Beyond the Imitation Game Benchmark)是一个协作基准测试,旨在探测大型语言模型并推断其未来的能力。该项目包含超过200个任务,这些任务可以通过关键字和任务名称进行总结。BIG-bench 的论文正在审查中,并且可以作为预印本获取。项目组织者可以通过电子邮件 bigbench@googlegroups.com 联系。

项目快速启动

安装

首先,克隆仓库并设置环境:

git clone https://github.com/google/BIG-bench.git
cd BIG-bench
python setup.py sdist
pip install -e .

使用 SeqIO 加载和评估 BIG-bench JSON 任务

以下是一个简单的示例,展示如何使用 SeqIO 加载和评估 BIG-bench JSON 任务:

import seqio
from bigbench.bbseqio import tasks

# 加载所有 JSON 任务
bb_mix = seqio.get_mixture_or_task("bigbench:all_json")
all_subtasks = [t.name for t in bb_mix.tasks]
print("\n".join(all_subtasks[:7]) + "\n")

# 检查一个示例任务
task = seqio.get_mixture_or_task("bigbench:simple_arithmetic_json")
ds = task.get_dataset(split="all", sequence_length={"inputs": 32, "targets": 32})
print(next(iter(ds)))

应用案例和最佳实践

创建新任务

要创建一个新的 BIG-bench 任务,可以参考以下步骤:

  1. 在项目中创建一个新的 JSON 文件,定义任务的详细信息。
  2. 使用 SeqIO 加载和测试新任务,确保其行为正确。

模型评估

提交模型评估时,确保遵循项目提供的指南和最佳实践,以确保评估结果的准确性和可重复性。

典型生态项目

NL-Augmenter

如果你对 BIG-bench 感兴趣,你可能也会对 NL-Augmenter 感兴趣。NL-Augmenter 是一个大规模协作项目,旨在开发处理自然语言的数据集转换。

BIG-bench项目地址:https://gitcode.com/gh_mirrors/bi/BIG-bench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋或依

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值