探索美食:大众点评店铺信息智能爬虫

探索美食:大众点评店铺信息智能爬虫

去发现同类优质开源项目:https://gitcode.com/

在这个数字化的时代,我们常常依赖于在线平台来寻找美食的藏匿之处。大众点评,作为一个知名的本地生活服务平台,拥有海量的店铺信息,但如何高效地获取这些数据呢?这就是我们要向您推荐的开源项目——大众点评店铺信息爬虫。

项目介绍

这个项目是一个精心设计的Python爬虫,专门用来抓取大众点评上的美食店铺信息。它采用了一系列高级技巧来应对网站的反爬策略,确保在抓取过程中保持稳定和高效。不仅如此,该项目还包含了详细的文档和示例,让初学者也能快速上手。

项目技术分析

花式反反爬

面对大众点评的多种反爬机制,如链接404、请求头校验、多类型字体反爬、验证码以及IP限制,该项目采取了以下策略:

  • 使用代理IP服务以避免IP被ban。
  • 在请求头中加入随机User-Agent和Referer参数,增加伪装度。
  • 设置随机延迟,模拟人类操作行为。

此外,dianping.py脚本清晰展示了爬虫的执行流程,便于理解和优化。

反反爬策略实现

  • 通过加强型爬虫代理,确保高存活率的IP资源。
  • 利用config.py进行配置管理,包括代理设置和请求头参数。
  • parse.py解析响应数据,提取关键信息。

项目及技术应用场景

这个项目不仅适合数据分析爱好者,用于研究餐饮业的趋势和热门店铺,还可以帮助开发者学习如何编写高效的爬虫,应对复杂的反爬挑战。对于那些需要大量餐厅信息进行市场调研或商业智能应用的企业来说,这也是一个宝贵的工具。

项目特点

  1. 高度定制化:可以根据需求修改配置,适应不同的反爬策略。
  2. 简单易用:清晰的代码结构和注释,让新手也能快速入门。
  3. 全面覆盖:从首页开始,逐页抓取,获取完整店铺列表。
  4. 数据可视化:提供数据库截图,直观展示抓取结果。

为了保证合法合规性,作者特别提醒:该代码仅供学习交流,禁止用于商业目的。如有任何问题,请及时通过邮件沟通。

在探索美食的道路上,让我们一起用科技的力量,挖掘出更多隐藏的美好。现在就访问项目GitHub仓库,开始您的美食探索之旅吧!

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 使用 Python 爬虫抓取大众点评店铺详情 为了实现对大众点评网站上特定店铺信息采集,通常会采用 `requests` 和 `BeautifulSoup` 或者 `Scrapy` 这样的框架来编写爬虫程序。下面提供了一个基于 Scrapy 的例子用于展示如何提取页面中的商铺名称、评分以及其他相关信息。 #### 准备工作 确保安装了必要的库: ```bash pip install scrapy requests beautifulsoup4 lxml fake_useragent ``` #### 创建项目结构并定义 Spider 类 创建一个新的 Scrapy 项目,并在其中添加自定义 spider 文件: ```python import scrapy from bs4 import BeautifulSoup from fake_useragent import UserAgent class DianpingSpider(scrapy.Spider): name = "dianping" allowed_domains = ["www.dianping.com"] start_urls = [ 'https://www.dianping.com/search/category/7/10/g119r80' # 成都火锅搜索链接作为起点 URL 示例 ] custom_settings = { 'USER_AGENT': str(UserAgent().random), 'ROBOTSTXT_OBEY': False, 'DOWNLOAD_DELAY': 2, # 设置下载延迟防止被封禁 IP 地址 } def parse(self, response): soup = BeautifulSoup(response.text, 'lxml') shops = [] for item in soup.select('#shop-all-list li'): try: title = item.find('h4').get_text(strip=True) score_element = item.select_one('.comment .nebula_star .star_score') or \ item.select_one('.comment span[title]') score = float(score_element.get_text(strip=True)) if score_element else None address_elements = item.select('.addr') addr = ''.join([a.get_text(strip=True) for a in address_elements]) shop_info = { 'name': title, 'rating': score, 'address': addr } yield shop_info except Exception as e: print(f"Error processing {item}: ", e) next_page = response.css('.next::attr(href)').get() if next_page is not None: yield response.follow(next_page, self.parse) ``` 此代码片段展示了如何通过解析 HTML 文档树状结构找到目标元素,并从中抽取所需的数据字段[^1]。同时注意到了反爬机制的存在,在请求头中加入了随机生成的 user-agent 字符串以及适当增加了两次请求间的时间间隔以降低触发频率限制的风险[^2]。 对于更复杂的场景比如登录状态下的访问或是处理 JavaScript 动态加载的内容,则可能需要用到 Selenium WebDriver 结合 Pyppeteer 来模拟浏览器行为完成任务[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金畏战Goddard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值