wowMJX
码龄5年
关注
提问 私信
  • 博客:27,421
    27,421
    总访问量
  • 11
    原创
  • 498,284
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2019-10-17
博客简介:

wowMJX的博客

查看详细资料
个人成就
  • 获得16次点赞
  • 内容获得1次评论
  • 获得93次收藏
创作历程
  • 11篇
    2020年
成就勋章
TA的专栏
  • 软件安装
    2篇
  • 深度学习
    6篇
  • 爬虫
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习图像处理数据分析
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tensorflow的介绍及安装

一、tensorflow的介绍①什么是数据流编程?数据流编程是一种解决多核处理器的效率利用问题的高性能并行编程模型。数据流编程与传统编程语言有着明显区别,它通过数据驱动的方式执行,将需要处理的数据分配到各个核上,将数据的计算与通信相分离,通过任务调度与分配,利用软件流水的并行特性来充分的挖掘流程序中潜在的并行性,使各个核之间负载均衡。在数据流范例中,一个数据流程序的静态实例会按照它的结构被描述成一张有向图。图中节点表示计算单元,边代表数据传输路径。相邻节点间通过边传输数据,节点消耗数据进行计算,并将产生
原创
发布博客 2020.07.28 ·
332 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Anaconda的安装

一、Anaconda的介绍Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等。Miniconda包括Conda、Python。
原创
发布博客 2020.07.28 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习---卷积神经网络解决分类与回归问题

一、CNN神经网络的发展史:Lenet,1986年Alexnet,2012年 2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名),AlexNet 是一种典型的 convolutional neural network,它由5层 convolutional layer,2层 fully connected layer,和最后一层 label layer (1000个node, 每个node代表ImageNet中的一个类别) 组成GoogleNet
原创
发布博客 2020.07.19 ·
14252 阅读 ·
11 点赞 ·
1 评论 ·
58 收藏

深度学习---RNN循环神经网络&LSTM解决长依赖问题

神经网络只能单独的处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,在我们处理某些任务时,要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。输入和输出都是等长的序列。这里使用RNN循环神经网络来处理这类问题。一、RNN循环神经网络循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出。隐藏层之间的结点是有连接的,输入不仅包括输入层的输出还包括上时刻隐藏层的输出。循环神经网络首先把所有的输入值进行词组的分解隐藏层的作用是对序列数据提取特征h2 的计算和 h1
原创
发布博客 2020.07.19 ·
7036 阅读 ·
3 点赞 ·
0 评论 ·
23 收藏

深度学习---卷积神经网络CNN概念及计算过程

一、卷积神经网络的介绍1、简介:卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是著名的计算机科学家Yann LeCun,目前在Facebook工作,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。2、解决的问题:分类问题、推荐系统、检测系统、自动驾驶汽车、分割数据监测、人脸识别二、CPU与GPU1、CPU中央处理器:解释计算机指令以及处理计算机软件中的数据,读
原创
发布博客 2020.07.12 ·
997 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习---前向传播和反向传播的推导过程

import numpy as np#激活函数def sigmoid(x): return 1/(1+np.exp(-x))#sigmoid的导数def sigmoid_backward(x): return x*(1-x) #创建数据集5x3X=np.array([[0,1,1], [1,1,0], [0,0,1], [1,0,1], [1,1,0] ])
原创
发布博客 2020.07.12 ·
272 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习---神经网络的介绍

一、神经网络1、线性方程:f=wx2、非线性方程:f=w2max(0,w1x) --------拟合更复杂的数据3、神经网络的本质:神经网络函数多了一个MAX()计算,这种非线性的函数使得神经网络相比于传统的线性分类更强大,因为非线性可以使得咱们的函数去拟合更复杂的数据二、神经网络结构输入层—>隐层:对输入数据进行非线性转换+激活函数:多个激活函数—>输出层①单层神经网络:f=w2max(0,w1x)②双层神经网络:f=w3max(0,w2max(0,w1x))对于深层
原创
发布博客 2020.07.01 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习-前向传播+反向传播

一、深度学与传统机器学的区别1:在数据量较少的情况下,机器学和深度学训练后的数据是差不多的;但是在数据量较多的情况下,使用深度学训练数据较好。2:机器学选择算法时需要调参,深度学不需要调参,深度学会发生过拟合的情况。3:传统机器学的计算资源耗费较高。二、深度学的应用1:自然语言应用2:计算机视觉三、分类任务的步骤1:收集数据并给定标签(需要收集很多数据,基本以万为单位)。2:训练一个分类器(选择相应的算法)。3:测试评估(计算准确率、精确率、召回率、ROC曲线)。四、传统机器学的计算步
原创
发布博客 2020.07.01 ·
1230 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

爬虫---爬取大众点评

使用命令行创建scrapy项目1、####ping.py# -*- coding: utf-8 -*-import osimport randomimport reimport requestsimport scrapy# from fake_useragent import UserAgent# ua = UserAgent()from lxml import etreefrom dianping.items import shopfrom dianping.settings
原创
发布博客 2020.06.27 ·
2461 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

爬虫---创建scrapy框架的项目

进入命令管理器通过命令scrapy startproject spider3进入spider3项目中执行scrapy genspider university qianmu.org (scrapy genspider 爬虫的名字name 爬虫的域名)通过pycharm软件导入此项目scrapy.cfg:必须有的重要的项目的配置文件item.py:定义Item类,从scrapy.Item继承,里面定义scrapy.Field类pipelines.py:处理爬取的数据流向
原创
发布博客 2020.06.27 ·
122 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

socket客户端与服务器端的通信

发送的数据import binasciiimport randomfrom _datetime import datetime######将字符串转为16进制def char2hex(data): data = data.encode('utf8')# binascii.b2a_hex(data) output = binascii.hexlify(data) return output######把16进制转为字符串def hex2char(data)
原创
发布博客 2020.05.18 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏