探秘雀魂智能助手:majsoul_wrapper项目深度剖析

探秘雀魂智能助手:majsoul_wrapper项目深度剖析

majsoul_wrapper 自动化雀魂AI的SDK,实时解析雀魂对局信息,并模拟鼠标动作出牌 项目地址: https://gitcode.com/gh_mirrors/ma/majsoul_wrapper

麻将在中华文化乃至全球范围内享有盛誉,而《雀魂》作为一款广受欢迎的线上日本麻将游戏,更是吸引了无数玩家。然而,想象一下,如果你能拥有一个智能副手,帮你自动化决策,那会是怎样一番体验?这就是majsoul_wrapper项目所带来的魔力。

项目简介

majsoul_wrapper是一个高度创新的开源项目,专为《雀魂》设计。它巧妙地利用WebSocket抓包技术结合图像识别,搭建了一个面向第三方AI的SDK接口。这意味着,热爱编程和技术的你可以编写自己的AI策略,让它在《雀魂》的世界里一展身手,自动应对复杂的麻将局势。

技术透视

项目的核心在于其独特的双接口设计——输入接口(input)输出接口(output)。通过mitmproxy实现WebSocket通信的拦截与分析,开发者可以获取详尽的游戏交互数据。这要求玩家首先开启mitmproxy服务,利用它在中间人位置捕获游戏中的网络通讯,之后通过protobuf库解析这些加密的消息,将原始二进制转换成易于理解和使用的JSON格式。此外,SDK内嵌的liqi.py和sdk.py进一步简化了数据分析,使AI开发者能够专注于策略而不必深陷数据解析细节。

在输出方面,项目引入了GUIInterface模块,借助pyautogui和OpenCV进行精准的图像识别与鼠标模拟操作,实现了AI策略的具体执行。这样的设计,既保证了策略的灵活实施,又确保了对战过程的流畅自然。

应用场景

想象一位麻将高手的智慧被编码为算法,无论是用于教育目的的教学模型,还是开发者测试人工智能学习的能力,甚至是玩家想探索游戏策略的极限,majsoul_wrapper都是完美的工具。在研究麻将战术、开发智能麻将伴侣,或是进行娱乐性的人机对战等方面,该项目展示了无限可能。

项目亮点

  • 无缝集成:无需修改游戏本身,通过中间人代理轻松接入。
  • 深度解析:精准的WebSocket数据捕获与Protobuf解析,降低了AI开发的门槛。
  • 即插即用式API:无论是输入还是输出,标准化的接口让AI开发直观易行。
  • 图像识别:结合OpenCV的高精度识别,确保了指令执行的准确性。
  • 全面教学资源:详尽的文档与示例代码,即便是初学者也能迅速上手。

majsoul_wrapper不仅是技术爱好者的玩具,更是研究人员和开发者探索人工智能在复杂游戏决策中应用的重要平台。通过这个项目,你可以深入理解到如何将理论算法应用于实际的游戏中,探索机器学习和实时决策制定的新边界。现在,就是加入这场技术与智力双重挑战的最佳时机,一起探索智能化麻将的奇妙世界吧!

majsoul_wrapper 自动化雀魂AI的SDK,实时解析雀魂对局信息,并模拟鼠标动作出牌 项目地址: https://gitcode.com/gh_mirrors/ma/majsoul_wrapper

下面是一个使用 TensorFlow 和 Keras 实现的麻将AI代码示例,主要使用了深度强化学习算法: ```python import numpy as np import tensorflow as tf from tensorflow import keras class MahjongAI: def __init__(self): self.model = self.build_model() self.target_model = self.build_model() self.target_model.set_weights(self.model.get_weights()) self.replay_buffer = [] self.batch_size = 32 self.gamma = 0.99 self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.update_freq = 1000 self.steps_since_update = 0 def build_model(self): model = keras.Sequential() model.add(keras.layers.Dense(128, input_dim=34, activation='relu')) model.add(keras.layers.Dense(128, activation='relu')) model.add(keras.layers.Dense(34, activation='linear')) model.compile(loss='mse', optimizer=keras.optimizers.Adam()) return model def select_action(self, state): if np.random.rand() < self.epsilon: return np.random.randint(0, 34) q_values = self.model.predict(state.reshape(1, -1))[0] return np.argmax(q_values) def update_replay_buffer(self, state, action, reward, next_state, done): self.replay_buffer.append((state, action, reward, next_state, done)) if len(self.replay_buffer) > 100000: self.replay_buffer.pop(0) def update_model(self): if len(self.replay_buffer) < self.batch_size: return batch = np.random.choice(self.replay_buffer, self.batch_size) states = np.array([transition[0] for transition in batch]) actions = np.array([transition[1] for transition in batch]) rewards = np.array([transition[2] for transition in batch]) next_states = np.array([transition[3] for transition in batch]) dones = np.array([transition[4] for transition in batch]) q_values = self.model.predict(states) next_q_values = self.target_model.predict(next_states) for i in range(self.batch_size): if dones[i]: q_values[i][actions[i]] = rewards[i] else: q_values[i][actions[i]] = rewards[i] + self.gamma * np.max(next_q_values[i]) self.model.fit(states, q_values, verbose=0) self.steps_since_update += 1 if self.steps_since_update % self.update_freq == 0: self.target_model.set_weights(self.model.get_weights()) def train(self, env, episodes=100): for episode in range(episodes): state = env.reset() done = False total_reward = 0 while not done: action = self.select_action(state) next_state, reward, done, _ = env.step(action) self.update_replay_buffer(state, action, reward, next_state, done) self.update_model() state = next_state total_reward += reward print('Episode', episode+1, 'Total Reward:', total_reward) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def play(self, env): state = env.reset() done = False while not done: action = self.select_action(state) print('Action:', action) state, _, done, _ = env.step(action) if __name__ == '__main__': ai = MahjongAI() # TODO: 实现麻将游戏环境,并传入 train 或 play 方法中进行训练或游戏 ``` 这个示例代码使用了深度强化学习算法,建立了一个神经网络模型来预测每个操作的质量分数,使用经验回放和目标网络来提高训练效率。在实际使用时,需要根据实际情况对代码进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郦岚彬Steward

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值