推荐开源项目:GRU4REC-PyTorch —— 会话基推荐的高效工具

推荐开源项目:GRU4REC-PyTorch —— 会话基推荐的高效工具

1、项目介绍

GRU4REC-PyTorch是一个基于PyTorch实现的会话基推荐模型,它源自于ICLR 2016发表的论文《Session-based Recommendations with Recurrent Neural Networks》和后续在CIKM 2018上的扩展研究。这个项目旨在利用门控循环单元(Gated Recurrent Unit, GRU)来捕捉用户在会话中的行为序列模式,从而生成有效的个性化推荐。源码基于Younghun Song (yhs-968)的pyGRU4REC,并且支持TOP1, BPR, TOP1-max, BPR-max以及交叉熵等多种损失函数。

2、项目技术分析

GRU4REC-PyTorch的核心是GRU网络,该网络能捕获用户历史行为序列中的动态模式。通过训练,模型学习到每个会话的表示,并预测出下一个可能被用户点击的物品。项目中还引入了Top-k Gains的概念,以增强模型对高排名预测的敏感性。此外,代码基于Python 3.5和PyTorch 0.4.1,易于理解和实现,提供了一套完整的数据预处理、训练和测试流程。

3、项目及技术应用场景

GRU4REC-PyTorch适用于任何需要实时、基于会话的推荐服务的场景,例如电子商务网站、流媒体平台或新闻聚合应用。由于其无需用户的历史信息,只依赖当前会话的行为序列,因此特别适合于新用户或隐私保护场景。

4、项目特点

  1. 灵活性:支持多种损失函数,可根据业务需求灵活调整。
  2. 可扩展性:基于PyTorch框架,易于与其他深度学习模块结合,进行模型的进一步优化和创新。
  3. 效率:通过GRU网络,模型能够快速处理大量会话数据。
  4. 易用性:清晰的文件结构和简单的命令行接口,使得数据预处理、训练和评估过程直观方便。

要开始使用GRU4REC-PyTorch,你需要获取RecSys Challenge 2015的数据集并按照项目文档中的说明进行数据预处理和模型训练。现在就加入,开启你的会话基推荐系统构建之旅吧!

# 数据预处理
python preprocessing.py

# 训练
python main.py

# 测试
python main.py --is_eval --load_model checkpoint/CHECKPOINT#/model_EPOCH#.pt

更多参数配置选项,请参照项目README文件中的详细说明。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个简单的GRU-D代码的PyTorch实现,用于处理时间序列数据。 ```python import torch import torch.nn as nn class GRUD(nn.Module): def __init__(self, input_size, hidden_size, output_size, dropout): super(GRUD, self).__init__() self.hidden_size = hidden_size self.gru = nn.GRU(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) self.dropout = nn.Dropout(dropout) def forward(self, x, lengths): """ x: (batch_size, seq_len, input_size) lengths: (batch_size,) """ # Sort input by decreasing sequence length lengths, sort_idx = lengths.sort(0, descending=True) x = x[sort_idx] # Pack padded sequence x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True) # Initialize hidden state h0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device) # Forward pass through GRU out, _ = self.gru(x, h0) # Unpack padded sequence out, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True) # Unsort output unsort_idx = sort_idx.argsort() out = out[unsort_idx] # Apply dropout out = self.dropout(out) # Pass through fully connected layer out = self.fc(out) return out ``` 在此代码中,我们定义了一个名为GRUD的类,其构造函数接收四个参数:输入大小,隐藏大小,输出大小和丢失率。我们使用nn.GRU定义了一个GRU层,它将输入大小作为输入维度,隐藏大小作为输出维度,并将batch_first设置为True以接受形状为(batch_size, seq_len, input_size)的输入。然后我们定义了一个全连接层,将隐藏状态转换为输出大小。最后,我们使用nn.Dropout定义了一个丢失层,以防止过拟合。 在前向传递函数中,我们首先将输入序列按其长度降序排列,并使用nn.utils.rnn.pack_padded_sequence对它们进行打包。这样做可以使GRU只处理非填充部分,从而提高效率。我们还在GRU之前初始化了一个零隐藏状态,并使用batch_first=True设置GRU的输入和输出格式。然后我们使用nn.utils.rnn.pad_packed_sequence对输出进行解压缩,并使用unsort_idx将其还原为原始顺序。最后,我们应用丢失层并通过全连接层传递输出。 要使用此模型进行训练,我们需要定义一个损失函数和优化器,并使用适当的数据加载器将数据传递给模型。例如,以下是一个简单的训练循环: ```python model = GRUD(input_size, hidden_size, output_size, dropout) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): for i, (inputs, targets, lengths) in enumerate(train_loader): inputs, targets, lengths = inputs.to(device), targets.to(device), lengths.to(device) outputs = model(inputs, lengths) loss = criterion(outputs.view(-1, output_size), targets.view(-1)) optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate the model after each epoch with torch.no_grad(): correct = 0 total = 0 for inputs, targets, lengths in test_loader: inputs, targets, lengths = inputs.to(device), targets.to(device), lengths.to(device) outputs = model(inputs, lengths) _, predicted = torch.max(outputs.data, 2) total += targets.size(0) * targets.size(1) correct += (predicted == targets).sum().item() accuracy = correct / total print(f"Epoch {epoch+1}, Test Accuracy: {accuracy:.4f}") ``` 在此训练循环中,我们遍历训练数据加载器中的所有批次,并将输入、目标和长度传递给模型。我们使用交叉熵损失计算损失,并使用Adam优化器进行反向传播和权重更新。在每个时代之后,我们使用测试数据加载器评估模型的性能,并计算分类准确度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚舰舸Elsie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值