GRU4Rec学习笔记(SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS)

目录

一、摘要

二、引言

三、推荐的RNN/GRU

四、自定义GRU模型

五、本文亮点

1、session-parallel mini-batch

2、negative samping

3、ranking loss

六、实验

1、数据集

2、评估指标

3、对比基线

4、参数与结构优化

5、结果

六、总结


一、摘要

        主要是对RNN的一个改进,针对RNN在用到推荐系统时,会面临会话时间短的问题,而不是长期会话,导致精度不准,为了解决这个问题, 作者通过对整个会话进行建模。

二、引言

        第一段:主要讨论了在机器学习和推荐领域忽视的问题(会话推荐),提出现有会话的缺点如cookie和游览器指纹,这些技术是不可靠的,电商部署的多为简单的方法,不使用用户资料,通过物品与物品的相似性、共现关系或转换概率,但是 它们通常只考虑了最后一次的点击或选择,而忽略了过去点击的信息
        在推荐系统或信息检索领域," 共现关系"指的是 两个或多个物品(或项目)在用户行为中 同时出现的频率或概率。如果用户在一次行为中选择了物品A,而在另一次行为中选择了物品B,那么我们就说物品A和物品B在用户行为中有共现关系。这种关系可以用于 推断物品之间的相似性或关联性。
        在推荐系统或信息检索领域, "转换概率"(切换选择下一个物品的概率)通常指的是用户在一个时间点选择某个物品后,在下一个时间点选择另一个物品的概率。这个概率反映了用户在 不同物品之间切换的趋势或倾向
        第二段:主要介绍了两种方法, 因子模型(Factor Models)和 邻域方法(Neighborhood Methods),前者通过将稀疏矩阵分解再重建,由于在会话推荐缺少个人信息, 较难应用,后者通过计算物品或用户间的相似性,这种在会话推荐得到了 广泛应用
        第三段:说了近些年深度神经网络在图像和语音识别方面的成功,各种各样的RNN成为顺序建模的首选,序列模型包括了文本翻译、对话建模和图像描述等。也就是 RNN在其它方面应用的成功
        第四段:讨论在推荐系统应用RNN的问题和方法,作者提出了会话推荐(session-based recommendation)说明了 处理稀疏序列的问题,以及 引入排名损失函数来调整RNN模型, RNN的初始输入为用户第一次点击第一个物品,每个连续的点击都会依赖之前所有点击输出,另外点击序列的 数据非常庞大,对于培训时间和可伸缩性非常重要。

三、推荐的RNN/GRU

RNN:ht 是在时间步 的隐藏状态,g是光滑有界的激活函数(sigmoid),W为隐藏层的权重矩阵,xt是时间t时单位的输入, U是上一个时间步到当前时间步的权重。

更新门

重置门

候选隐藏层

隐藏层

输出

四、自定义GRU模型

        模型的输入是当前会话的状态,输出是会话中下一个事件的物品,为了稳定性对输入向量进行了归一化,在输入和第一层GRU之间新增嵌入层,在最后一层和输出之间新增前馈层(Feedforward layers 也称全连接层或密集层)。因为 推荐系统不是递归神经网络的主要应用领域,因此修改了基本网络,为了更好的适应任务。
        1-of-N coding 就是 one-hot编码

五、本文亮点

1、session-parallel mini-batch

会话并行在mini-batch中,处理长度的 两种策略 (1)按照长度排序,这样padding(填充)会相对较少(2)对长的进行截断或者剪裁,显然 两种策略都不合适,因为在推荐系统中,长的和短的序列差异极大,因此作者提出session并行概念,如图,分成3个并行,当一个序列并行结束后,将新的序列补进来,甚至不需要padding。

2、negative samping

        作者先说了为什么要进行负采样,首先因为推荐系统的 数据量太大,中等规模的网店,物品数量就能在数万的范围,而更大的,甚至在数十万甚至上百万,因此要对输出进行采样,仅计算一小部分。
        作者将 受流行的物品,想必用户大概率是知道的, 但是用户并没有选择说明用户不喜欢它的概率占比会比较大进而作为负采样,也是一种快速负采样的方法,基于pop的采样,可解释性也更强,计算也会更快。

3、ranking loss

作者简单说了排名loss的3种方式:pointwise、pairwise和listwise,并分析优缺点:

        pointwise是独立估计(直观),但使得相关物品排名低,不稳定。

        pairwise是比较正负样本得分,要求正的低于负的排名,在实验中表现较好

        listwise是使用在所有物品,但是计算代价太高,因此不常用。

BPR损失

TOP1损失

        作者设计的,相比bpr 在loss 后面 加了一项负样本正则项,希望负样本评分越小越好。

六、实验

1、数据集

        RecSys Challenge 2015(RSC15) 包含 电子商务网站的点击流数据,这些点击流以购买事件结束。
        VIDEO:来自类似 YouTube 的OTT 视频服务平台,收集观看视频达到一定时间的事件。
        OTT 是 "Over-The-Top" 的缩写,指的是通过互联网传输音频、视频和其他媒体内容,而无需通过传统的有线或卫星电视运营商进行分发的服务。

2、评估指标

        Recall@20和MRR@20
        Mean Reciprocal Rank :MRR 的值范围在  0 到 1 之间,越接近 1 表示系统的性能越好,MRR 关注的是 第一个正确结果的位置而不考虑后续的排名
        计算公式:

3、对比基线

POP:

POP 策略不考虑用户的个性化兴趣,而是根据整个训练集中物品的 全局流行度,始终推荐那些被大多数用户选择的物品。在一定程度上,可以解决新用户冷启动的问题。
S-POP:
是一种基于会话的POP,它能够 捕捉到当前会话中正在流行的物品,更好地满足用户的短期兴趣。
Item-KNN
BPR-MF

4、参数与结构优化

        进行调参,优化器作者使用rmsprop和adagrad两种优化算法,发现 adagrad算法表现更好,也使用了LSTM、RNN都没GRU的效果好,证明理论损失函数TOP1的效果最好,使用one-hot编码更好,使用单层GRU单元效果最好,提高GRU的宽度有好处。

5、结果

        交叉熵损失在VIDEO1000是不稳定的,因此作者未给出结果,在增加单元,会发现 交叉熵的损失的在下降,然而 成对的在提升

六、总结

        作者将GRU应用到新的领域:推荐系统,并且对基础GRU进行了一定的改进, 会话并行的小批量、基于小批量的输出采样和排名损失函数 ,并且效果优于常用的基线。
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jingjing~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值