3D-VisTA 开源项目教程

3D-VisTA 开源项目教程

3D-VisTA 项目地址: https://gitcode.com/gh_mirrors/3d/3D-VisTA

1. 项目介绍

3D-VisTA 是一个预训练的 Transformer 模型,专门用于 3D 视觉和文本对齐任务。该项目是 ICCV 2023 论文 "3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment" 的官方实现。3D-VisTA 通过自注意力层进行单模态建模和多模态融合,无需复杂的任务特定设计。为了进一步提升其在 3D-VL 任务中的性能,项目构建了 ScanScribe 数据集,这是首个大规模的 3D 场景-文本对数据集,用于 3D-VL 预训练。

2. 项目快速启动

2.1 环境配置

首先,创建并激活 Conda 环境:

conda env create --name 3dvista --file=environment.yml
conda activate 3dvista

2.2 安装 PointNet++

进入 PointNet++ 目录并安装:

cd vision/pointnet2
python3 setup.py install

2.3 数据准备

下载 ScanNet 数据并放置在指定目录:

mkdir -p data/scanfamily/scan_data
# 下载 ScanNet 数据并放置在 data/scanfamily/scan_data 目录下

下载 ScanRefer、ReferIt3D、ScanQA 和 SQA3D 数据,并放置在指定目录:

mkdir -p data/scanfamily/annotations
# 下载相关数据并放置在 data/scanfamily/annotations 目录下

2.4 下载预训练模型

下载所有预训练模型并放置在指定目录:

mkdir -p project/pretrain_weights
# 下载预训练模型并放置在 project/pretrain_weights 目录下

2.5 运行 3D-VisTA

使用以下命令运行 3D-VisTA,任务包括 scanrefer、scanqa、sr3d、nr3d、sqa 和 scan2cap:

python3 run.py --config project/vista/[task]_config.yml

3. 应用案例和最佳实践

3.1 视觉定位

3D-VisTA 在视觉定位任务中表现出色,能够准确地将 3D 对象与文本描述对齐。通过预训练和微调,模型在 ScanRefer 数据集上取得了优异的成绩。

3.2 密集标注

在密集标注任务中,3D-VisTA 能够生成详细的 3D 场景描述,帮助用户更好地理解场景内容。通过 ScanScribe 数据集的预训练,模型在 Scan2Cap 任务中表现突出。

3.3 问答系统

3D-VisTA 在问答系统中也有广泛应用,能够根据 3D 场景内容回答用户提出的问题。通过 ScanQA 数据集的微调,模型在 ScanQA 任务中取得了领先的成绩。

4. 典型生态项目

4.1 ScanNet

ScanNet 是一个大规模的 3D 室内场景数据集,为 3D-VisTA 提供了丰富的训练数据。ScanNet 数据集包含了大量的 RGB-D 扫描数据,为 3D-VL 任务提供了坚实的基础。

4.2 ScanRefer

ScanRefer 是一个 3D 视觉定位数据集,包含了大量的 3D 场景和文本对数据。3D-VisTA 通过 ScanRefer 数据集的微调,在视觉定位任务中表现优异。

4.3 ScanQA

ScanQA 是一个 3D 问答数据集,包含了大量的 3D 场景和问答对数据。3D-VisTA 通过 ScanQA 数据集的微调,在问答系统任务中取得了领先的成绩。

通过以上模块的介绍,您可以快速了解并上手 3D-VisTA 项目,并在实际应用中取得优异的效果。

3D-VisTA 项目地址: https://gitcode.com/gh_mirrors/3d/3D-VisTA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚舰舸Elsie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值