3D-VisTA 开源项目教程
3D-VisTA 项目地址: https://gitcode.com/gh_mirrors/3d/3D-VisTA
1. 项目介绍
3D-VisTA 是一个预训练的 Transformer 模型,专门用于 3D 视觉和文本对齐任务。该项目是 ICCV 2023 论文 "3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment" 的官方实现。3D-VisTA 通过自注意力层进行单模态建模和多模态融合,无需复杂的任务特定设计。为了进一步提升其在 3D-VL 任务中的性能,项目构建了 ScanScribe 数据集,这是首个大规模的 3D 场景-文本对数据集,用于 3D-VL 预训练。
2. 项目快速启动
2.1 环境配置
首先,创建并激活 Conda 环境:
conda env create --name 3dvista --file=environment.yml
conda activate 3dvista
2.2 安装 PointNet++
进入 PointNet++ 目录并安装:
cd vision/pointnet2
python3 setup.py install
2.3 数据准备
下载 ScanNet 数据并放置在指定目录:
mkdir -p data/scanfamily/scan_data
# 下载 ScanNet 数据并放置在 data/scanfamily/scan_data 目录下
下载 ScanRefer、ReferIt3D、ScanQA 和 SQA3D 数据,并放置在指定目录:
mkdir -p data/scanfamily/annotations
# 下载相关数据并放置在 data/scanfamily/annotations 目录下
2.4 下载预训练模型
下载所有预训练模型并放置在指定目录:
mkdir -p project/pretrain_weights
# 下载预训练模型并放置在 project/pretrain_weights 目录下
2.5 运行 3D-VisTA
使用以下命令运行 3D-VisTA,任务包括 scanrefer、scanqa、sr3d、nr3d、sqa 和 scan2cap:
python3 run.py --config project/vista/[task]_config.yml
3. 应用案例和最佳实践
3.1 视觉定位
3D-VisTA 在视觉定位任务中表现出色,能够准确地将 3D 对象与文本描述对齐。通过预训练和微调,模型在 ScanRefer 数据集上取得了优异的成绩。
3.2 密集标注
在密集标注任务中,3D-VisTA 能够生成详细的 3D 场景描述,帮助用户更好地理解场景内容。通过 ScanScribe 数据集的预训练,模型在 Scan2Cap 任务中表现突出。
3.3 问答系统
3D-VisTA 在问答系统中也有广泛应用,能够根据 3D 场景内容回答用户提出的问题。通过 ScanQA 数据集的微调,模型在 ScanQA 任务中取得了领先的成绩。
4. 典型生态项目
4.1 ScanNet
ScanNet 是一个大规模的 3D 室内场景数据集,为 3D-VisTA 提供了丰富的训练数据。ScanNet 数据集包含了大量的 RGB-D 扫描数据,为 3D-VL 任务提供了坚实的基础。
4.2 ScanRefer
ScanRefer 是一个 3D 视觉定位数据集,包含了大量的 3D 场景和文本对数据。3D-VisTA 通过 ScanRefer 数据集的微调,在视觉定位任务中表现优异。
4.3 ScanQA
ScanQA 是一个 3D 问答数据集,包含了大量的 3D 场景和问答对数据。3D-VisTA 通过 ScanQA 数据集的微调,在问答系统任务中取得了领先的成绩。
通过以上模块的介绍,您可以快速了解并上手 3D-VisTA 项目,并在实际应用中取得优异的效果。