分布图神器:Distribution Diagrams

分布图神器:Distribution Diagrams

distribution_diagramsR-script for generating canonical diagrams of distributions to be used to describe Bayesian hierarchical models.项目地址:https://gitcode.com/gh_mirrors/di/distribution_diagrams

项目简介

在数据科学与编程领域,可视化工具是理解和交流复杂信息的关键。distribution_diagrams 是一个由 Rasmus Abildgaard 制作的 Python 库,它专注于创建美观且易于理解的分布图。这个项目可以在 上找到,并且完全开源,旨在帮助开发者和数据科学家更好地展示他们的数据分布。

技术分析

distribution_diagrams 基于 Python 的绘图库 matplotlib 和统计库 numpypandas,它提供了一种简便的方式来绘制箱型图(Boxplots)、小提琴图(Violin plots)和直方图(Histograms)。这些图形都是对数值数据分布的直观表示,对于识别数据集中的模式、异常值和分布特征非常有用。

  • 箱型图:通过五个数概括数据的分布情况(最小值、下四分位数、中位数、上四分位数、最大值),可以快速看出数据的集中趋势和离散程度。
  • 小提琴图:结合了箱型图和密度图的特点,能够同时显示数据的集中趋势和分布形状,尤其适合比较多个组别的数据分布。
  • 直方图:通过将数据分成等宽的区间并计算每个区间的频数,直观地展示了数据分布的频率或概率密度。

应用场景

无论是在学术研究、数据分析报告还是日常开发调试中,distribution_diagrams 都能大显身手。例如:

  • 在机器学习模型训练后,你可以用它来检查特征的分布,以了解模型输入是否符合预期。
  • 当你需要解释数据集的统计特性时,这些图表提供了清晰的视觉辅助。
  • 对比不同实验条件下的结果,也可以利用这些图来一目了然地展示差异。

特点与优势

  1. 易用性:API 设计简洁,只需几行代码即可生成高质量的分布图。
  2. 灵活性:支持自定义颜色、标签和其他样式,适应各种报告需求。
  3. 可扩展性:可以与其他Python数据处理库无缝集成,如 seabornplotly 进行更复杂的定制。
  4. 交互式:配合 Jupyter Notebook 使用,可以动态更新图表,增强探索性分析体验。

结语

如果你正在寻找一种优雅的方式来展示你的数据分布,distribution_diagrams 是一个值得尝试的工具。借助它的强大功能和灵活接口,无论是新手还是经验丰富的开发者,都能轻松提升数据可视化的质量和效率。现在就去 克隆项目,开始你的可视化之旅吧!

distribution_diagramsR-script for generating canonical diagrams of distributions to be used to describe Bayesian hierarchical models.项目地址:https://gitcode.com/gh_mirrors/di/distribution_diagrams

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
N-甲基吡咯烷酮(NMP)是一种具有高极性、高沸点、低粘度、低挥发性、高热稳定性和化学稳定性的非质子溶剂。作为高性能溶剂,其广泛应用于锂离子电池制造、化工生产等多个领域。 NMP原料来源可分为合成NMP与再生NMP两类。合成NMP指通过化学合成工艺制得的NMP产品,其工业生产路线以γ-丁内酯(GBL)与单甲基胺为原料经缩合反应生成。再生NMP则指对使用后的NMP废液进行回收提纯 NMP废液特性: 高浓度NMP:废液中NMP含量较高,因NMP强溶解性可能混合多种有机物及无机物 低毒性但具刺激性:虽较其他有机溶剂毒性低,但高浓度接触仍对人体皮肤及眼睛产生刺激 处理难度大:因高沸点与强溶解性,单纯物理蒸发或自然挥发难以处理,需采用特定回收净化技术 严格环保要求:尤其在电池制造领域,NMP纯度要求极高,再生处理后的NMP纯度须达到同等标准,否则将影响产品质量与环境安全 NMP回收模式: 委托加工模式:回收企业为客户提供闭环循环服务,直接回收客户废液并提纯后返还。该模式可降低客户处理成本,实现资源循环利用 购销模式:回收企业采购上游供应商的NMP废液,经处理提纯后销售给下游客户,通过购销差价盈利 内部循环模式:大型企业集团自建回收处理设施,实现废液中NMP的内部循环利用。例如三菱重工在国内外建有溶剂回收装置,特别是随着全球锂电池需求增长,其海外工厂陆续采用现场回收设备,无需第三方处理即可实现NMP的直接回收提纯。 据QYResearch调研团队最新报告“全球NMP回收服务市场报告2025-2031”显示,预计2031年全球NMP回收服务市场规模将达到106万吨,未来几年年复合增长率CAGR为10.0%。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜殉瑶Nydia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值