gen-efficientnet-pytorch 项目教程

gen-efficientnet-pytorch 项目教程

gen-efficientnet-pytorch Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS 项目地址: https://gitcode.com/gh_mirrors/ge/gen-efficientnet-pytorch

1. 项目介绍

gen-efficientnet-pytorch 是一个基于 PyTorch 的预训练模型库,主要包含了一系列高效的神经网络模型,如 EfficientNet、MixNet、MobileNetV3 等。这些模型在计算资源有限的情况下表现出色,适用于移动设备和嵌入式系统。项目的目标是提供一个通用的实现,涵盖了大多数从 MobileNet V1/V2 派生的计算/参数高效架构,包括通过自动化神经架构搜索找到的模型。

2. 项目快速启动

安装依赖

首先,确保你已经安装了 PyTorch。然后,通过以下命令安装 gen-efficientnet-pytorch

pip install git+https://github.com/rwightman/gen-efficientnet-pytorch.git

加载预训练模型

以下代码展示了如何加载一个预训练的 EfficientNet 模型并进行推理:

import torch
from geffnet import create_model

# 创建一个 EfficientNet-B0 模型
model = create_model('efficientnet_b0', pretrained=True)
model.eval()

# 输入数据
input_tensor = torch.randn(1, 3, 224, 224)

# 推理
with torch.no_grad():
    output = model(input_tensor)

print(output)

自定义模型

你可以通过修改模型的参数来创建自定义的 EfficientNet 模型:

model = create_model('efficientnet_b0', num_classes=10, drop_rate=0.2)

3. 应用案例和最佳实践

图像分类

gen-efficientnet-pytorch 最常见的应用场景是图像分类。你可以使用预训练模型对图像进行分类,或者在自定义数据集上进行微调。

import torchvision.transforms as transforms
from PIL import Image

# 图像预处理
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 加载图像
image = Image.open('path_to_image.jpg')
image = transform(image).unsqueeze(0)

# 推理
with torch.no_grad():
    output = model(image)

# 获取预测结果
predicted_class = torch.argmax(output, dim=1).item()
print(f'Predicted class: {predicted_class}')

迁移学习

迁移学习是一种常见的深度学习技术,通过在预训练模型的基础上进行微调,可以在新的任务上获得更好的性能。以下是一个简单的迁移学习示例:

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 数据集准备
train_dataset = datasets.ImageFolder('path_to_train_data', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

# 冻结预训练模型的参数
for param in model.parameters():
    param.requires_grad = False

# 替换最后一层
model.classifier = torch.nn.Linear(model.classifier.in_features, len(train_dataset.classes))

# 训练
optimizer = torch.optim.Adam(model.classifier.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()

for epoch in range(10):
    model.train()
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

4. 典型生态项目

PyTorch Image Models (timm)

timm 是一个由 Ross Wightman 开发的 PyTorch 图像模型库,包含了大量的预训练模型和实用工具。gen-efficientnet-pytorch 中的许多模型定义和权重都与 timm 兼容,因此你可以轻松地将这些模型集成到 timm 的生态系统中。

ONNX 和 Caffe2

项目还提供了 ONNX 和 Caffe2 的导出工具,允许你将模型导出为 ONNX 格式,并在 Caffe2 中进行推理。这对于需要在不同框架之间迁移模型的场景非常有用。

自定义训练脚本

如果你需要更高级的训练功能,可以参考 Ross Wightman 的另一个项目 pytorch-image-models,该项目提供了丰富的训练脚本和超参数配置,可以帮助你更好地训练和微调模型。

通过以上内容,你应该能够快速上手 gen-efficientnet-pytorch 项目,并在实际应用中发挥其强大的功能。

gen-efficientnet-pytorch Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS 项目地址: https://gitcode.com/gh_mirrors/ge/gen-efficientnet-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班歆韦Divine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值