EfficientNet-PyTorch 使用教程

EfficientNet-PyTorch 使用教程

EfficientNet-PyTorchA PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)项目地址:https://gitcode.com/gh_mirrors/ef/EfficientNet-PyTorch

项目介绍

EfficientNet-PyTorch 是一个基于 PyTorch 框架实现的 EfficientNet 模型库。EfficientNet 是一系列图像分类模型,通过重新思考卷积神经网络的模型缩放方法,实现了在保持高精度的同时,模型大小和计算效率大幅提升。该项目提供了从 EfficientNet-B0 到 EfficientNet-B7 的多种模型,支持加载预训练权重,适用于图像分类任务。

项目快速启动

安装

你可以通过 pip 安装 EfficientNet-PyTorch:

pip install efficientnet_pytorch

或者从源码安装:

git clone https://github.com/lukemelas/EfficientNet-PyTorch.git
cd EfficientNet-PyTorch
pip install -e .

加载预训练模型

以下代码展示了如何加载一个预训练的 EfficientNet 模型:

from efficientnet_pytorch import EfficientNet

# 加载 EfficientNet-B0 模型
model = EfficientNet.from_pretrained('efficientnet-b0')

应用案例和最佳实践

图像分类

EfficientNet 模型主要用于图像分类任务。以下是一个简单的示例,展示如何使用 EfficientNet 进行图像分类:

import torch
from efficientnet_pytorch import EfficientNet
from PIL import Image
import torchvision.transforms as transforms

# 加载预训练模型
model = EfficientNet.from_pretrained('efficientnet-b0')

# 图像预处理
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 加载图像
image = Image.open('path_to_image.jpg')
image = transform(image)
image = image.unsqueeze(0)  # 增加 batch 维度

# 模型推理
model.eval()
with torch.no_grad():
    outputs = model(image)
    _, predicted = outputs.max(1)

print(f'预测类别: {predicted.item()}')

迁移学习

EfficientNet 模型也可以用于迁移学习。以下是一个简单的示例,展示如何冻结部分层并训练剩余层:

import torch.nn as nn
import torch.optim as optim

# 加载预训练模型
model = EfficientNet.from_pretrained('efficientnet-b0')

# 冻结所有层
for param in model.parameters():
    param.requires_grad = False

# 解冻最后一层
model._fc.weight.requires_grad = True
model._fc.bias.requires_grad = True

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练过程
for epoch in range(10):
    for inputs, labels in dataloader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

典型生态项目

PyTorch

EfficientNet-PyTorch 是基于 PyTorch 框架实现的,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库,支持高效的模型开发和训练。

ImageNet

EfficientNet 模型在 ImageNet 数据集上进行了预训练,ImageNet 是一个大规模的图像分类数据集,包含超过 100 万张图像和 1000 个类别。

TensorFlow

虽然 EfficientNet-PyTorch 是基于 PyTorch 实现的,但它的设计与原始的 TensorFlow 实现保持一致,因此可以方便地从 TensorFlow 迁移到 PyTorch。

通过以上教程,你可以快速上手并应用 EfficientNet-PyTorch 进行图像分类任务,同时了解其在迁移学习中的应用和相关生态项目。

EfficientNet-PyTorchA PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)项目地址:https://gitcode.com/gh_mirrors/ef/EfficientNet-PyTorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马冶娆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值