Datasketch 教程:使用概率数据结构高效处理大数据

Datasketch 教程:使用概率数据结构高效处理大数据

datasketchMinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble and HNSW项目地址:https://gitcode.com/gh_mirrors/da/datasketch

1. 项目介绍

Datasketch 是一个 Python 库,提供了一系列概率数据结构,如 MinHash、LSH、Weighted MinHash、HyperLogLog 和 HyperLogLog++。这些数据结构被设计用来高效地处理和搜索大规模数据集,即使在牺牲一定精确度的情况下也能保持较快的速度。Datasketch 适用于近似相似性比较、基数估计和数据去重等场景。

2. 项目快速启动

安装

确保你已安装 Python 3.7 或更高版本,然后通过 pip 安装 Datasketch:

pip install datasketch

使用示例

下面是一个简单的 MinHash 示例,计算两个字符串的 Jaccard 相似度:

from datasketch import MinHash

def compute_jaccard_similarity(s1, s2):
    m1 = MinHash()
    m2 = MinHash()

    m1.update(s1.encode('utf8'))
    m2.update(s2.encode('utf8'))

    return m1.jaccard(m2)

# 测试示例
string1 = "Hello, world!"
string2 = "World, Hello!"
print(compute_jaccard_similarity(string1, string2))

3. 应用案例和最佳实践

  1. 文本相似度检测:可以用 MinHash 和 LSH 来查找大量文档中的重复或者相似文本。
  2. 数据去重:在海量数据中消除重复项,例如社交网络用户的用户名或者电子邮件地址。
  3. 实时基数估算:对流式数据进行在线计数,无需存储所有数据,适合日志分析和实时统计。

最佳实践:

  • 根据应用场景选择合适的数据结构。例如,如果关心的是数据集中唯一元素的数量,HyperLogLog++ 是一个不错的选择。
  • 利用可扩展性:Datasketch 支持 Redis 和 Cassandra 存储层,可以在分布式环境中扩大规模。

4. 典型生态项目

  • go-datasketch: 一个 Go 语言实现的概率数据结构库,与 Datasketch 类似,用于大型数据集的处理。
  • datasketches-java: Java 版本的类似库,提供了类似功能但面向 JVM 平台。
  • scikit-learn-contrib: 包含了 scikit-learn 生态系统中的拓展模型,其中可能包括利用 Datasketch 技术的方法。

了解更多信息和更详细的使用示例,可以访问项目官方文档和 GitHub 页面:

通过实践和探索,你会发现 Datasketch 在处理大数据时是一个强大而灵活的工具。

datasketchMinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble and HNSW项目地址:https://gitcode.com/gh_mirrors/da/datasketch

好的,这个问题需要进行比较详细的步骤和代码实现,以下是一个可能的解决方案: 1. 数据集准备 首先需要准备一个包含1000张图片的数据集,可以使用公开的图像数据集,例如MNIST或CIFAR-10。将所有图像转换为灰度图像,并将它们保存成大小相同的numpy数组,每个数组应表示一张图片。 2. 实现LSH索引 接下来,可以实现局部敏感哈希算法,并使用它在数据集上建立索引。这里我们可以使用Python的LSH库,例如lshashpy或datasketch。在这里,我们使用lshashpy库,以下是示例代码: ```python from lshashpy import LSHash # 创建LSH对象,指定哈希表数量和哈希长度 hash_size = 16 num_tables = 10 lsh = LSHash(hash_size, num_tables) # 将数据集中的每个图片向量添加到LSH索引中 for i in range(1000): img = dataset[i] img_vector = img.reshape(-1) lsh.index(img_vector, extra_data=i) ``` 3. 近邻搜索 有了LSH索引之后,可以使用它来进行近邻搜索。以下是示例代码: ```python # 对数据集中的前1000个图片分别进行近邻搜索 for i in range(1000): img = dataset[i] img_vector = img.reshape(-1) # 使用LSH索引查找前10个最近邻 neighbors = lsh.query(img_vector, num_results=10, distance_func='euclidean') # 输出结果 print("Image", i, "neighbors:", neighbors) ``` 4. 性能评估 最后,可以计算搜索算法的性能。这里我们可以使用准确率和运行时间来评估性能。以下是示例代码: ```python import time total_correct = 0 total_time = 0 # 对数据集中的前1000个图片分别进行近邻搜索 for i in range(1000): img = dataset[i] img_vector = img.reshape(-1) # 使用LSH索引查找前10个最近邻,并计算运行时间 start_time = time.time() neighbors = lsh.query(img_vector, num_results=10, distance_func='euclidean') end_time = time.time() # 统计准确率和运行时间 correct_neighbors = [n[1] for n in neighbors if n[1] != i] if i in correct_neighbors: total_correct += 1 total_time += end_time - start_time # 输出结果 print("Accuracy:", total_correct / (1000 * 10)) print("Average query time:", total_time / 1000) ``` 这里,我们通过统计正确的最近邻数量来计算准确率,通过计算所有查询的运行时间来计算平均查询时间。注意,这里的准确率和运行时间仅供参考,实际结果可能会因数据集和LSH参数的不同而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘惟妍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值