面试神器:interview 代码库 - 深入解析与应用指南

面试神器:interview 代码库 - 深入解析与应用指南

在程序员的世界里,面试往往是一道难关,其中涉及到的技术问题和实践场景千变万化。今天我们要介绍的 是一个集合了各种编程语言和技术领域的面试题目的开源项目,旨在帮助开发者更好地准备面试,提升技术水平。

项目简介

是由 sosohime 创建并维护的一个代码仓库,它包含了丰富的编程面试题目和解答,涵盖了数据结构、算法、操作系统、网络、数据库等多个方面,涉及的语言包括 Java, Python, C++, JavaScript 等。项目的目的是为开发者提供一个可以实战演练和学习的平台,增强他们解决实际问题的能力。

技术分析

该项目以 Markdown 格式编写,易于阅读和贡献。每个题目都有清晰的问题描述,然后是详细的解决方案和思路解析。部分题目还包含性能优化的建议,有助于理解如何提高代码效率。

此外,由于项目托管于 GitCode,你可以利用 Git 的版本控制功能查看历史变更,学习他人的改进过程。同时,项目也支持 Issues 和 Pull Request 功能,方便开发者交流讨论和贡献代码。

应用场景

  • 面试准备:对于求职者来说,可以按照不同的标签和难度等级挑选题目进行练习,全面了解并掌握面试常见知识点。
  • 教学参考:教师或导师可以将此作为教学资源,让学生在实践中学习和巩固理论知识。
  • 自我提升:即使已经有工作经验的开发者,也可以通过挑战这些题目,提升自己的编码技巧和解决问题的能力。

特点

  1. 全面性:覆盖多个编程语言和技术领域,题目多样,满足不同需求。
  2. 实践性强:不仅有答案,还有解题思路,鼓励读者动手实现。
  3. 持续更新:随着技术的发展,项目会不断添加新的题目和更新已有内容,保持与时俱进。
  4. 社区参与:通过 GitCode 平台,开发者可以直接参与讨论和贡献,共建优质的学习资源。

结语

是一个强大的工具,无论你是准备面试还是寻求技术提升,都能从中获益。赶快加入到这个项目中来,与其他开发者共同探索编程世界吧!

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾雁冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值