探索教育大数据:EdNet 开源项目
去发现同类优质开源项目:https://gitcode.com/
EdNet 是一个由 Santa 人工智能辅导服务收集的大型学生行为数据集,涵盖两年多的数据,涉及超过78万韩国学生。这个数据集旨在为教育领域的研究者提供一个前所未有的平台,以探索和理解学习过程中的复杂互动模式。
项目简介
EdNet 的最大特色在于其规模大、多样性丰富、结构层次分明以及跨平台特性。它包含了超过1亿3千万次的学生交互记录,平均每名学生有441.20次交互行为。此外,EdNet 提供了13169个问题和1021场讲座,标记了293种不同的技能类型,总共被消费了近9500万次和60万次。
技术分析
EdNet 数据集分为四个级别(KT1,KT2,KT3 和 KT4),每个级别具有不同的数据粒度。从基本的问题解决记录(KT1)到详细的动作序列(KT2, KT3, KT4),涵盖了学习过程中学生的各种行为,如阅读解释、观看讲座等。这种设计允许研究人员逐步深入地分析学生的行为模式。
应用场景
EdNet 可广泛应用于以下场景:
- 教育数据分析:通过大规模真实世界的智能教学系统数据,研究者可以识别学习模式,评估学生表现。
- 深度学习模型开发:对于知识追踪(DKN, SAKT 等)模型的研究,EdNet-KT1 提供了基础信息。
- 用户行为建模:通过 EdNet-KT2 及以上级别的数据,可以更准确地捕捉学生的实时行为和决策过程。
- 跨平台学习体验优化:由于 EdNet 包含来自不同设备的数据,可以帮助构建适应未来多平台的学习环境。
项目特点
- 大规模:78万多名学生,超过1亿3千万次交互,这是目前公开的最大的教育数据集。
- 多样性:涵盖各种学习活动,包括阅读、观看讲座等,为研究提供更多维度。
- 层次化:从简单到复杂的四个级别,满足不同深度的数据需求。
- 跨平台:包括移动和桌面平台的数据,反映现代学生的多元学习方式。
获取数据
想要下载 EdNet 数据集,请访问:
EdNet 不仅仅是一个数据集,它是一扇窗,让研究者窥探未来的个性化教育。如果你对教育科技、机器学习在教育领域的应用感兴趣,那么 EdNet 绝对值得你一试。加入 EdNet 社区,开启你的数据探索之旅吧!
去发现同类优质开源项目:https://gitcode.com/