探索教育大数据:EdNet 开源项目

探索教育大数据:EdNet 开源项目

去发现同类优质开源项目:https://gitcode.com/

EdNet 是一个由 Santa 人工智能辅导服务收集的大型学生行为数据集,涵盖两年多的数据,涉及超过78万韩国学生。这个数据集旨在为教育领域的研究者提供一个前所未有的平台,以探索和理解学习过程中的复杂互动模式。

项目简介

EdNet 的最大特色在于其规模大、多样性丰富、结构层次分明以及跨平台特性。它包含了超过1亿3千万次的学生交互记录,平均每名学生有441.20次交互行为。此外,EdNet 提供了13169个问题和1021场讲座,标记了293种不同的技能类型,总共被消费了近9500万次和60万次。

技术分析

EdNet 数据集分为四个级别(KT1,KT2,KT3 和 KT4),每个级别具有不同的数据粒度。从基本的问题解决记录(KT1)到详细的动作序列(KT2, KT3, KT4),涵盖了学习过程中学生的各种行为,如阅读解释、观看讲座等。这种设计允许研究人员逐步深入地分析学生的行为模式。

应用场景

EdNet 可广泛应用于以下场景:

  1. 教育数据分析:通过大规模真实世界的智能教学系统数据,研究者可以识别学习模式,评估学生表现。
  2. 深度学习模型开发:对于知识追踪(DKN, SAKT 等)模型的研究,EdNet-KT1 提供了基础信息。
  3. 用户行为建模:通过 EdNet-KT2 及以上级别的数据,可以更准确地捕捉学生的实时行为和决策过程。
  4. 跨平台学习体验优化:由于 EdNet 包含来自不同设备的数据,可以帮助构建适应未来多平台的学习环境。

项目特点

  1. 大规模:78万多名学生,超过1亿3千万次交互,这是目前公开的最大的教育数据集。
  2. 多样性:涵盖各种学习活动,包括阅读、观看讲座等,为研究提供更多维度。
  3. 层次化:从简单到复杂的四个级别,满足不同深度的数据需求。
  4. 跨平台:包括移动和桌面平台的数据,反映现代学生的多元学习方式。

获取数据

想要下载 EdNet 数据集,请访问:

EdNet 不仅仅是一个数据集,它是一扇窗,让研究者窥探未来的个性化教育。如果你对教育科技、机器学习在教育领域的应用感兴趣,那么 EdNet 绝对值得你一试。加入 EdNet 社区,开启你的数据探索之旅吧!

去发现同类优质开源项目:https://gitcode.com/

03-22
### EDNet 的概述 EDNet 是一种基于深度学习的教育数据分析模型,主要用于知识追踪(Knowledge Tracing, KT)。它通过结合序列建模技术和注意力机制来捕捉学生的学习行为模式以及知识点掌握情况的变化过程[^1]。以下是关于 EDNet 的具体介绍: #### 1. **EDNet 架构设计** EDNet 主要由以下几个核心组件构成: - **输入层**:接收学生的交互数据,通常包括题目 ID、选项响应和时间戳等特征。 - **嵌入层**:将离散的题目 ID 和其他分类变量映射到连续向量空间中,以便后续处理。 - **编码器模块**:采用 LSTM 或 Transformer 结构对序列化的学生答题记录进行编码,提取长期依赖关系并生成隐藏状态表示。 - **解码器模块**:利用编码后的隐藏状态预测下一时刻的知识点掌握概率或者答题正确率。 该架构能够有效解决传统方法无法充分考虑上下文信息的问题,并且具有较强的泛化能力,在多个公开基准测试集中表现优异。 #### 2. **实现细节** 为了更好地理解如何构建这样一个复杂的神经网络系统,下面给出一段 Python 实现代码片段作为参考: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Embedding, Dense, LSTM, Attention, Concatenate from tensorflow.keras.models import Model def build_ednet_model(vocab_size, embedding_dim=100, hidden_units=128): # 输入定义 input_exercise = Input(shape=(None,), name="exercise_input") input_response = Input(shape=(None,), name="response_input") # 嵌入层 exercise_embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim)(input_exercise) response_embedding_layer = Embedding(input_dim=2, output_dim=embedding_dim)(input_response) combined_embeddings = Concatenate()([exercise_embedding_layer, response_embedding_layer]) # 编码部分 (LSTM or GRU can be used here too) lstm_output = LSTM(units=hidden_units, return_sequences=True)(combined_embeddings) # 注意力机制应用 attention_weights = Attention()([lstm_output, lstm_output]) final_representation = tf.reduce_sum(attention_weights * lstm_output, axis=1) # 输出层 predictions = Dense(1, activation='sigmoid', name="prediction")(final_representation) model = Model(inputs=[input_exercise, input_response], outputs=predictions) return model model = build_ednet_model(vocab_size=5000) model.compile(optimizer='adam', loss='binary_crossentropy') ``` 上述代码展示了如何创建一个基本版本的 EDNet 模型框架,其中包含了必要的组成部分如嵌入操作、循环单元的选择以及最终输出的设计思路。 #### 3. **优势特点分析** 相比传统的 IRT(Item Response Theory)或其他浅层机器学习算法而言,EDNet 展现出如下几个显著优点: - 更加灵活地适应不同类型的任务需求; - 能够自动发现潜在规律而无需手动工程特性; - 提供更直观的概率解释形式帮助教师评估教学效果; 这些特性的综合作用使得 EDNet 成为当前智慧教育领域内的一个重要研究方向之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许煦津

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值