推荐开源项目:OpenASR——基于PyTorch的端到端语音识别系统

推荐开源项目:OpenASR——基于PyTorch的端到端语音识别系统

OpenASR A pytorch based end2end speech recognition system. OpenASR 项目地址: https://gitcode.com/gh_mirrors/op/OpenASR

项目介绍

OpenASR 是一个基于 PyTorch 框架的端到端语音识别系统,主要采用了 Speech-Transformer 架构。该项目旨在提供一套简单易用、性能优良的语音识别解决方案,适用于各种研究和应用场景。

项目技术分析

核心技术

  • Speech-Transformer:作为项目的主要架构,Speech-Transformer 通过 Transformer 模型实现序列到序列的转换,避免了传统 RNN 模型的长序列依赖问题,显著提升了识别效率。
  • Label Smoothing:用于缓解模型对标签的过度自信,提高模型的泛化能力。
  • SpecAugmentation:通过对频谱图进行数据增强,提升模型对噪声和变体的鲁棒性。
  • LST(Layer-wise Sequential Training):逐层训练策略,优化模型训练过程,提升最终性能。

技术栈

  • 编程语言:Python >= 3.6
  • 深度学习框架:PyTorch >= 1.1
  • 配置管理:PyYAML >= 5.1
  • 可视化工具:TensorFlow 和 TensorboardX(可选)

项目及技术应用场景

  1. 学术研究:OpenASR 提供了模块化设计和丰富的算法集成,适合作为语音识别领域的学术研究平台。
  2. 智能语音助手:项目的高效识别能力可用于开发智能语音助手,提升用户体验。
  3. 语音数据标注:通过自动语音识别,辅助人工进行语音数据标注,提高工作效率。
  4. 实时语音转写:适用于会议记录、字幕生成等实时语音转写应用。

项目特点

1. 最小依赖

OpenASR 系统不依赖其他额外的软件来提取特征或解码,用户只需安装 PyTorch 即可,极大地简化了环境配置。

2. 性能优良

在 AISHELL-1 数据集上,基线系统的字符错误率(CER)为 6.6%,优于 ESPNet,表现出色。

3. 模块化设计

系统分为 trainer、metric、schedule 等模块,方便进一步扩展和维护。

4. 端到端实现

特征提取和 token 划分采用在线实现,系统可以直接处理 wav 文件,简化了整个处理流程。

使用方法

数据准备

bash prep_data.sh

训练模型

bash train.sh

模型平均

bash avg.sh

解码和打分

bash decode_test.sh
bash score.sh data/test/text exp/exp1/decode_test_avg-last10

可视化

通过 TensorboardX 进行训练过程可视化:

tensorboard --logdir=$expdir --bind_all

然后在浏览器中访问 http://localhost:6006 查看可视化结果。

per token loss in batch encoder attention encoder-decoder attention

致谢

OpenASR 系统基于 PyTorch 实现,借鉴了 KALDI 和 Lingvo 的设计理念,感谢相关团队的开源贡献。

引用

Dong, Linhao, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

Zhou, Shiyu, et al. "Syllable-based sequence-to-sequence speech recognition with the transformer in mandarin chinese." arXiv preprint arXiv:1804.10752 (2018).

OpenASR 作为一个高效、易用的语音识别系统,无疑为语音识别领域的研究和应用提供了强有力的支持。欢迎大家试用和贡献代码,共同推动语音识别技术的发展!

OpenASR A pytorch based end2end speech recognition system. OpenASR 项目地址: https://gitcode.com/gh_mirrors/op/OpenASR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟洁祺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值