探秘Python-Binance: 全面解析与实战指南

本文详细介绍了Python-Binance库,一个用于与Binance交易所API交互的Python库,涵盖了RESTfulAPI集成、WebSocket实时流、错误处理、签名安全及多种应用场景,是开发加密货币交易应用的强大工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

探秘Python-Binance: 全面解析与实战指南

项目地址:https://gitcode.com/gh_mirrors/py/python-binance

是一个由Samm Chardy开发并维护的Python库,专门用于与Binance交易所的API进行交互。本文将深入探讨其核心功能、技术实现和应用场景,帮助开发者更好地利用这个工具进行加密货币交易自动化。

项目简介

Python-Binance库提供了简单易用的接口,使得开发者可以轻松地完成诸如获取市场数据、下单、取消订单、管理钱包等任务。它完全兼容Binance API的RESTful和WebSocket接口,支持最新版本的功能,如期货、保证金交易等。

技术分析

1. RESTful API 集成

Python-Binance库通过HTTP请求与Binance的RESTful API进行通信。这些请求包括GET、POST、DELETE等,涵盖了账户信息查询、市场数据获取、交易操作等多个方面。库内的每个方法都封装了对应的API调用,减少了开发者的工作量。

2. WebSocket 实时流

对于需要实时数据更新的应用,Python-Binance提供了WebSocket客户端,允许开发者订阅特定市场的深度、价格变动或者心跳信息。这为创建实时交易策略或监控工具提供了可能。

3. 错误处理与测试支持

为了保证稳定性和可靠性,Python-Binance库包含了丰富的错误处理机制,对常见的网络问题和API返回错误进行了封装。同时,项目提供了一套完整的单元测试和集成测试,确保在新版本发布时功能的正确性。

4. 签名与安全性

由于涉及到资金操作,安全是首要关注点。Python-Binance库负责生成请求所需的签名,确保了通信的安全性,并且支持使用密钥对进行身份验证。

应用场景

  • 交易机器人:你可以使用Python-Binance构建自己的自动交易系统,根据预设规则进行买卖操作。
  • 数据分析:通过提取历史市场数据,进行技术分析和预测。
  • 实时监控:订阅WebSocket流,及时接收市场价格变化,触发提醒或执行操作。
  • 风险管理:跟踪账户余额、抵押品价值等,自动化执行风险管理策略。

特点

  • 易于上手:API设计简洁,文档详细,新手也能快速入门。
  • 全面覆盖:涵盖Binance API的所有主要功能,包括常规交易、杠杆交易、期权和期货等。
  • 持续更新:积极跟进Binance API的新特性,保持同步。
  • 社区活跃:有良好的社区支持,遇到问题时能得到及时的帮助。

结语

Python-Binance是连接Binance交易所的理想选择,无论你是初涉加密货币交易的开发者,还是寻求高效工具的专业人士。借助其强大而灵活的功能,你可以在Python环境中自由发挥,构建你的交易王国。立即开始探索,让Python-Binance为你的投资旅程增添无限可能!

python-binance Binance Exchange API python implementation for automated trading 项目地址: https://gitcode.com/gh_mirrors/py/python-binance

### 回答1: 目前(2022年2月),还没有针对Python 3.11发布的官方版本,而目前最新的稳定版本是Python 3.10。因此,目前可以使用Python 3.10对应的torch版本,具体如下: - torch 1.10.1 - torch 1.9.1 - torch 1.8.1 - torch 1.7.1 需要注意的是,这些版本并不是针对Python 3.11进行优化的,因此在使用时需要注意兼容性问题。 ### 回答2: Python 3.11对应的torch版本是Torch 1.9.0。Torch是一个深度学习框架,用于构建和训练神经网络。它提供了丰富的工具和功能,使得开发者能够更容易地实现各种机器学习任务。 Torch 1.9.0是Torch的一个重要版本更新,它带来了一些新功能和改进。其中包括对Python 3.11的支持。Python 3.11是Python的一个新版本,它带来了许多新的语法特性和改进,使得编写Python代码更加简洁和高效。Torch 1.9.0的发布使得开发者可以在Python 3.11环境下使用最新的Torch版本进行深度学习任务。 使用Torch 1.9.0,开发者可以利用其强大的神经网络模型库构建各种类型的神经网络,包括卷积神经网络、循环神经网络和变换器等。Torch还提供了一系列优化器和损失函数,用于训练和优化神经网络模型。此外,Torch还支持GPU加速,可以在GPU上高效地进行深度学习计算。 总而言之,Python 3.11对应的Torch版本是Torch 1.9.0。开发者可以在Python 3.11环境下使用此版本的Torch来构建和训练神经网络,从而实现各种机器学习任务。 ### 回答3: 目前(2021年10月),Python最新版本是Python 3.10,并没有Python 3.11版本。而PyTorch是一个开源的机器学习框架,它的最新版本是1.9.0。PyTorch的版本Python版本不完全对应,一般来说,PyTorch的每个主要版本都会支持一个范围内的Python版本。例如,PyTorch 1.9.0支持Python 3.6到3.9版本。所以,目前没有针对Python 3.11的特定PyTorch版本。但可以预期,在Python 3.11稳定并广泛使用后,PyTorch团队很可能会发布之兼容的版本。要查看最新的PyTorch版本及其兼容的Python版本,可以去PyTorch官方网站或GitHub页面查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕艾琳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值