推荐项目:Generative Recommenders——打造下一代推荐系统

推荐项目:Generative Recommenders——打造下一代推荐系统

generative-recommendersRepository hosting code used to reproduce results in "Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations" (https://arxiv.org/abs/2402.17152, ICML'24).项目地址:https://gitcode.com/gh_mirrors/ge/generative-recommenders

在数据驱动的时代,个性化推荐已成为连接用户与信息的桥梁。今天,我们要向您隆重推荐一个前沿项目——Generative Recommenders。该项目基于即将在ICML'24上发表的论文《Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations》,旨在通过万亿参数级别的序列转换器革新推荐算法的边界。

项目简介

Generative Recommenders是一个开源代码库,专注于实现“行动胜于言语”的理念,利用深度学习的力量,特别是高效率的序列模型HSTU(Hierarchical Sequence Transformer Unit),来提升推荐系统的性能。该库目前提供了复现实验所需的代码,尤其是对传统顺序推荐场景下的验证(如MovieLens和Amazon Reviews数据集),让我们能直接感受到HSTU相较于其他方法(如SASRec、BERT4Rec和GRU4Rec)的优势。

技术分析

本项目的核心在于其创新的HSTU架构,设计用于处理大规模的推荐任务,它能够有效学习用户的动态行为模式,并通过 trillion-parameter 级别的模型规模突破推荐精度和召回率的限制。在实践中,HSTU通过引入更高效的采样softmax损失函数,优化了原有的自我注意力机制,显著提高了模型在处理海量数据时的表现力。

应用场景

Generative Recommenders特别适用于那些需要高度精准且个性化的推荐场景,如视频流媒体服务、电商产品推荐、在线阅读平台等。通过该项目,开发者可以构建更为智能的推荐引擎,不仅能预测用户可能感兴趣的内容,还能生成高质量的潜在兴趣推荐列表,从而提升用户体验,增加用户粘性。特别是在电影、图书和商品推荐领域,HSTU及其大模型版本(HSTU-large)已经展示了超越现有方法的明显优势。

项目特点

  • 高精度表现:HSTU模型在多个基准数据集上的测试结果显示,相比标准模型如SASRec、BERT4Rec,在HR@N和NDCG@N指标上有显著提升。
  • 可扩展性:支持万亿级参数,为处理大规模数据集铺平道路。
  • 易复现研究:提供详细实验步骤和配置文件,使研究人员可以轻松复现结果并进行进一步探索。
  • 高效计算设计:尽管依赖高性能GPU(至少24GB HBM内存),但项目规划未来发布自定义内核以优化性能。
  • 全面文档:随着项目进展,将有更多技术报告和说明文档,便于理解和应用。

结语

对于致力于提升用户体验、探索推荐系统极限的技术团队来说,Generative Recommenders无疑是值得一试的宝藏项目。它不仅代表了当前推荐系统技术的尖端水平,也为未来的推荐算法发展开辟了新的方向。加入这个社区,一起探索如何用AI的力量让每一次推荐都更加精准、贴心!

generative-recommendersRepository hosting code used to reproduce results in "Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations" (https://arxiv.org/abs/2402.17152, ICML'24).项目地址:https://gitcode.com/gh_mirrors/ge/generative-recommenders

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕艾琳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值