大模型推荐词生成——Generating Query Recommendations via LLMs 【阅读笔记】

背景

主要去进行query的相关搜索补充;
例如

我们引入生成查询推荐(GQR)系统。 GQR以大语言模型为基础,利用大语言模型的提示能力,通过提示中提供的几个例子(检索或手工)来理解推荐任务。

方案

Generative Query Recommendation (GQR)

在这里插入图片描述

  • prompt 就是几个给定的推荐例子 然后用 prompt方式 生成推荐词
  • 例子是人工写的 包含多个方面
    在这里插入图片描述

研究问题

RQ1:与现有查询推荐系统相比,我们提出的 GQR 系统能否生成相关且有用的查询推荐?

答案: 有

RQ2:我们的 GQR 系统生成的查询是否比其他系统生成的查询更能吸引用户?

答案: 有

文中给的例子是:
传统方式:瑞安航空支持、瑞安航空联系方式、瑞安航空客户服务
LLM生成:瑞安航空的职业、瑞安航空的历史 要好吧 我感觉起来
在我看来 LLM可能还有点宽泛了, 但是作者认为这种更加吸引

RQ3:我们的 GQR 系统是否会为长尾(即罕见的)查询生成建议?

答案: 有, LLM 每个都能生成

RQ4:查询日志仍然能为生成查询推荐带来价值吗?

答案:虽然查询日志不再重要,但行为数据仍然有助于增强生成查询推荐系统的性能

实验

评价:

  • 清晰度 Simplified Clarity Score (SCS)

  • 信息增益 NDCG(归一化折扣累计增益Normalized Discounted Cumulative Gain)

  • 人工结果
    聘请了 12 名专业注释者,提供系统 1、系统 2 和 GQR (GPT-3) 生成的建议。 将注释者分为三组,即每组四个注释者。 我们还将从查询日志中随机采样的 192 个查询随机划分为上述三组,最终每组有 64 个查询。然后匿名标注

结果

  • 推荐的清晰度
    在这里插入图片描述
  • 信息增益
    在这里插入图片描述
  • 人工评估
    在这里插入图片描述

都是优

个人心得

  • 提出的生成查询推荐(GQR)本质就是prompt的 few shot
  • 提出的RA-GQR (GPT-3) 本质就是 通过 给的shot 是通过相似性检索而来的
  • 以过往经验: gpt4+ fewshot 效果 一般不如 拿业务数据 sft 一个7B小模型, 效果堪忧, 名字倒是取得很好,范围也大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值