YOLOv5 ONNX 项目使用教程

YOLOv5 ONNX 项目使用教程

ONNX-yolov5deploy yolov5 in c++项目地址:https://gitcode.com/gh_mirrors/on/ONNX-yolov5

目录结构及介绍

ONNX-yolov5/
├── data/
│   ├── images/
│   └── labels/
├── models/
│   ├── yolov5n.yaml
│   ├── yolov5s.yaml
│   ├── yolov5m.yaml
│   ├── yolov5l.yaml
│   └── yolov5x.yaml
├── utils/
│   ├── datasets.py
│   ├── general.py
│   ├── loss.py
│   └── metrics.py
├── weights/
│   ├── yolov5n.pt
│   ├── yolov5s.pt
│   ├── yolov5m.pt
│   ├── yolov5l.pt
│   └── yolov5x.pt
├── export.py
├── train.py
├── detect.py
├── requirements.txt
└── README.md
  • data/: 包含训练和测试数据集的图像和标签。
  • models/: 包含YOLOv5不同版本的模型配置文件。
  • utils/: 包含各种实用工具脚本,如数据集处理、通用函数、损失函数和评估指标。
  • weights/: 包含预训练的模型权重文件。
  • export.py: 用于将模型导出为ONNX格式。
  • train.py: 用于训练模型。
  • detect.py: 用于推理和检测。
  • requirements.txt: 项目依赖的Python包列表。
  • README.md: 项目说明文档。

项目的启动文件介绍

detect.py

detect.py 是用于执行目标检测的主要脚本。它可以从图像、视频或摄像头中检测目标,并将结果保存或显示。

使用方法:

python detect.py --source 0  # 使用摄像头
python detect.py --source file.jpg  # 使用图像文件
python detect.py --source file.mp4  # 使用视频文件

train.py

train.py 是用于训练YOLOv5模型的脚本。它支持多种配置和自定义数据集。

使用方法:

python train.py --data data/coco.yaml --cfg models/yolov5s.yaml --weights '' --batch-size 64 --epochs 300

export.py

export.py 是用于将训练好的模型导出为ONNX格式的脚本。

使用方法:

python export.py --weights weights/yolov5s.pt --include onnx

项目的配置文件介绍

data/coco.yaml

data/coco.yaml 是数据集配置文件,包含了数据集的路径、类别信息等。

示例内容:

train: data/images/train
val: data/images/val
nc: 80
names: ['person', 'bicycle', 'car', ...]

models/yolov5s.yaml

models/yolov5s.yaml 是模型配置文件,定义了模型的结构和参数。

示例内容:

# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],

ONNX-yolov5deploy yolov5 in c++项目地址:https://gitcode.com/gh_mirrors/on/ONNX-yolov5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施刚爽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值