ActNN:基于激活压缩的高效训练库安装与使用指南

本文介绍了Gary9987使用Keras开发的一个项目,通过深度学习技术成功识别台湾高铁验证码,展示了深度学习在验证码破解中的潜力,可用于验证码识别、AI教育和安全研究。项目提供完整代码,模块化设计便于复现和扩展。
摘要由CSDN通过智能技术生成

ActNN:基于激活压缩的高效训练库安装与使用指南

actnn ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training 项目地址: https://gitcode.com/gh_mirrors/ac/actnn

一、项目目录结构及介绍

ActNN是一个专为PyTorch设计的库,旨在通过2位激活压缩训练大幅度减少模型训练时所需的记忆体占用。以下是项目的基本目录结构及其简介:

ucbrise/actnn
├── actnn               # 核心代码模块,包括实现记忆体节省层的代码
│   ├── __init__.py
│   └── ...             # 包含各种优化过的层如QConv2d, QReLU等
├── benchmarks          # 性能测试脚本和数据
├── examples            # 使用ActNN的示例代码,涵盖不同类型的任务
│   ├── image_classification
│   └── mem_speed_benchmark
├── image_classification # 用于图像分类任务的相关配置和模型构建示例
├── LICENSE             # 许可证文件,遵循MIT协议
├── README.md           # 项目的主要说明文档
├── requirements.txt    # 依赖项列表
└── setup.py            # 安装脚本
  • actnn 目录包含了核心功能,提供了多个自定义的PyTorch层,以支持压缩激活的训练。
  • benchmarksexamples 分别提供性能测试案例和如何在实际应用中使用ActNN的实例。
  • image_classification 提供特定于图像分类任务的配置和模型构建方法。

二、项目启动文件介绍

ActNN的启动通常不是通过单一的“启动文件”,而是通过将库集成到用户的训练脚本中。一个典型的启动流程会涉及到导入ActNN,配置优化级别,以及转换模型来使用ActNN的内存效率层。例如,从mem_speed_benchmark/train.py文件开始,它演示了如何使用ActNN来衡量不同的模型在内存使用和训练速度上的表现。用户需首先设置ActNN的优化级别,然后转换其模型的层,之后便可以执行常规的训练过程。

示例启动步骤(简化的):

  1. 配置: 在你的训练脚本中引入ActNN并设定优化级别。

    import actnn
    actnn.set_optimization_level('L3')
    
  2. 模型转换: 将您的PyTorch模型转换为使用ActNN的版本。

    model = actnn.QModule(model)
    
  3. 执行训练: 遵循您原有的训练流程,但此时模型会使用ActNN的特性进行训练。

三、项目的配置文件介绍

虽然ActNN的核心使用不直接关联到一个固定的配置文件,但用户可以通过代码中的变量和参数进行配置,比如优化级别(set_optimization_level)。对于更复杂的应用场景,如自定义模型、调整数据加载器或启用特殊功能(如混合精度训练),配置通常是在用户自己的训练脚本中完成的。例如,调整数据加载器以返回样本索引,或者在配置ActNN的一些高级选项时,可能需要手动设置一些变量或利用ActNN提供的API。

对于特定任务,如图像分类,可能会有相应的配置文件或脚本(如image_classification目录下的配置),这些通常是用来设置网络架构、训练循环参数等的。不过,这些配置并不是集中在一个全局的文件里,而是分散在各个示例和模块之中,需要用户根据具体示例进行查阅和修改。


这个指南概述了如何开始使用ActNN,包括基础的目录理解、简单的启动流程和配置方式。深入学习ActNN时,应参考其详细的文档和源码注释,以充分利用该库的功能。

actnn ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training 项目地址: https://gitcode.com/gh_mirrors/ac/actnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢忻含Norma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值