crepes 项目教程

crepes 项目教程

crepes Conformal classifiers, regressors and predictive systems 项目地址: https://gitcode.com/gh_mirrors/cr/crepes

1. 项目目录结构及介绍

crepes 项目的目录结构如下:

crepes/
├── docs/
├── src/
│   └── crepes/
│       ├── __init__.py
│       ├── ...
├── CHANGELOG.md
├── LICENSE
├── README.md
├── pyproject.toml
└── setup.py

目录结构介绍

  • docs/: 存放项目的文档文件,通常包含项目的详细说明、API文档等。
  • src/crepes/: 项目的源代码目录,包含主要的Python模块和包。
    • init.py: 初始化文件,使得 src/crepes 成为一个Python包。
    • ...: 其他Python文件和子目录,包含项目的核心功能实现。
  • CHANGELOG.md: 记录项目的版本变更历史。
  • LICENSE: 项目的开源许可证文件,通常为BSD-3-Clause许可证。
  • README.md: 项目的介绍文件,包含项目的基本信息、安装方法、使用说明等。
  • pyproject.toml: 项目的配置文件,用于定义项目的构建系统和依赖。
  • setup.py: 项目的安装脚本,用于将项目打包并安装到Python环境中。

2. 项目的启动文件介绍

crepes 项目没有明确的“启动文件”,因为它是一个Python包,通常通过导入模块来使用。项目的核心功能分布在 src/crepes 目录下的多个Python文件中。

主要模块介绍

  • crepes.py: 包含主要的类和函数,用于实现conformal prediction的功能。
  • crepes/extras.py: 提供一些标准的选项,用于计算难度估计、非一致性分数和Mondrian类别。

3. 项目的配置文件介绍

pyproject.toml

pyproject.tomlcrepes 项目的配置文件,用于定义项目的构建系统和依赖。以下是文件的主要内容:

[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "crepes"
version = "0.1.0"
description = "Python package for conformal prediction"
authors = [
    { name="Henrik Boström", email="henrik.bostrom@kth.se" }
]
license = { file="LICENSE" }
readme = "README.md"
requires-python = ">=3.6"
dependencies = [
    "numpy",
    "scikit-learn",
    "pandas"
]

配置文件介绍

  • [build-system]: 定义了构建系统的要求和后端。
  • [project]: 定义了项目的基本信息,如名称、版本、描述、作者、许可证、Python版本要求和依赖项。

setup.py

setup.py 是项目的安装脚本,用于将项目打包并安装到Python环境中。以下是文件的主要内容:

from setuptools import setup, find_packages

setup(
    name='crepes',
    version='0.1.0',
    description='Python package for conformal prediction',
    author='Henrik Boström',
    author_email='henrik.bostrom@kth.se',
    license='BSD-3-Clause',
    packages=find_packages(where='src'),
    package_dir={'': 'src'},
    install_requires=[
        'numpy',
        'scikit-learn',
        'pandas'
    ],
    classifiers=[
        'Development Status :: 3 - Alpha',
        'Intended Audience :: Developers',
        'License :: OSI Approved :: BSD License',
        'Programming Language :: Python :: 3',
        'Programming Language :: Python :: 3.6',
        'Programming Language :: Python :: 3.7',
        'Programming Language :: Python :: 3.8',
        'Programming Language :: Python :: 3.9',
    ],
)

配置文件介绍

  • name: 项目的名称。
  • version: 项目的版本号。
  • description: 项目的简短描述。
  • author: 项目的作者。
  • author_email: 作者的电子邮件地址。
  • license: 项目的许可证。
  • packages: 需要包含的Python包。
  • package_dir: 指定包的目录。
  • install_requires: 项目依赖的其他Python包。
  • classifiers: 项目的分类信息,用于帮助PyPI和其他工具识别项目的特性。

crepes Conformal classifiers, regressors and predictive systems 项目地址: https://gitcode.com/gh_mirrors/cr/crepes

安卓期末大作业—Android图书管理应用源代码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—And
本文以电动汽车销售策略为研究对象,综合运用层次分析法、决策树、皮尔逊相关性分析、BP神经网络及粒子群优化等多种方法,深入探讨了影响目标客户购买电动汽车的因素及相应的销售策略。研究结果显示,客户对合资品牌电动汽车的满意度为78.0887,对自主品牌的满意度为77.7654,对新势力品牌的满意度为77.0078。此外,研究还发现电池性能、经济性、城市居住年限、居住区域、工作单位、职务、家庭年收入、个人年收入、家庭可支配收入、房贷占比、车贷占比等因素对电动汽车销量存在显著影响。通过BP神经网络对目标客户的购买意愿进行预测,其预测数据拟合程度超过80%,且与真实情况高度接近。基于研究结果,本文为销售部门提出了提高销量的建议,包括精准定位尚未购买电动汽车的目标客户群体,制定并实施更具针对性的销售策略,在服务难度提升不超过5%的前提下,选择实施最具可行性和针对性的销售方案。 在研究过程中,层次分析法被用于对目标客户购买电动汽车的影响因素进行系统分析与评价;决策树模型则用于对缺失数据进行预测填充,以确保数据的完整性和准确性;BP神经网络用于预测目标客户的购买意愿,并对其预测效果进行评估;粒子群优化算法对BP神经网络模型进行优化,有效提升了模型的稳定性和预测能力;皮尔逊相关性分析用于探究不同因素与购买意愿之间的相关性。通过这些方法的综合运用,本文不仅揭示了影响电动汽车销量的关键因素,还为销售策略的优化提供了科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮奕滢Kirby

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值