Hibiki:实时语音翻译模型打破语言交流障碍!支持将语音实时翻译成其他语言的语音或文本

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 Hibiki 这个开源的实时语音翻译模型,能够将一种语言的语音实时翻译成另一种语言的语音或文本。

🚀 快速阅读

Hibiki 是一个用于实时语音翻译的解码器模型,支持语音到语音(S2ST)和语音到文本(S2TT)的翻译功能。

  1. 核心功能:实时语音到语音和文本翻译,支持批量和设备端部署。
  2. 技术原理:基于多流语言模型架构,使用弱监督学习生成合成数据,确保低延迟和高保真度。

Hibiki 是什么

Hibiki

Hibiki 是由 Kyutai Labs 开源的实时语音翻译模型,能够将一种语言的语音实时翻译成另一种语言的语音或文本。它基于多流语言模型架构,同步处理源语音和目标语音,联合生成文本和音频标记,实现语音到语音(S2ST)和语音到文本(S2TT)的翻译功能。Hibiki 使用弱监督学习方法,基于文本翻译系统的困惑度识别单词级的最佳延迟,创建对齐的合成数据进行训练。

Hibiki 在法语到英语的翻译任务中表现出色,具有高翻译质量、说话者保真度和自然度,支持批量翻译和实时设备端部署,展现了强大的实用潜力。

Hibiki 的主要功能

  • 实时语音到语音翻译(S2ST):将一种语言的语音实时翻译成另一种语言的语音,保留说话者的音色和语调。
  • 实时语音到文本翻译(S2TT):将语音实时翻译成目标语言的文本,提供更灵活的使用场景。
  • 低延迟翻译:基于实时积累上下文信息,逐块生成翻译内容,延迟极低,接近人类口译水平。
  • 高保真度:生成的语音自然流畅,与源语音的音色和语调高度相似,用户体验接近专业人类口译。
  • 支持批量和实时部署:推理过程简单,支持批量处理和实时设备端部署,适合大规模应用。

Hibiki 的技术原理

  • 多流语言模型架构

    • 同步处理:同时接收源语音和生成目标语音,基于多流架构联合建模两个音频流。
      avigator。
    • 文本和音频标记:模型预测文本和音频标记的层次结构,实现语音到文本和语音到语音的翻译。
    • 因果音频编解码器:用预训练的因果音频编解码器(如Mimi)将语音编码为低帧率的离散标记,支持实时流式处理。
  • 弱监督学习与上下文对齐

    • 合成数据生成:基于翻译单语音频的转录文本并重新合成目标语音,生成对齐的合成数据。
    • 上下文对齐:用现成文本翻译系统的困惑度,计算单词级对齐,确保目标语音的生成与源语音的上下文同步。
    • 静音插入与对齐感知TTS:基于插入静音或用对齐感知的TTS模型重新合成目标语音,确保目标语音的延迟符合实时翻译的要求。
  • 说话者相似性与分类器自由引导

    • 说话者相似性标记:对训练数据进行说话者相似性分类标记,避免过滤数据的同时,在推理时优先选择高相似性样本。
    • 分类器自由引导:调整条件标签的权重,增强模型对说话者相似性的控制,进一步提升语音保真度。
  • 高效的推理过程

    • 温度采样:用温度采样技术,结合因果音频编解码器,实现流式输入和输出。
    • 批量处理与实时部署:推理过程简单高效,支持批量处理和实时设备端部署,适合大规模应用场景。

如何运行 Hibiki

1. PyTorch

为了使用 PyTorch 运行 Hibiki,首先需要安装 moshi 包:

pip install -U moshi

然后可以从 kyutai-labs/moshi 获取示例文件,并通过以下命令进行翻译:

wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hibiki_crepes.mp3
python -m moshi.run_inference sample_fr_hibiki_crepes.mp3 out_en.wav --hf-repo kyutai/hibiki-1b-pytorch-bf16

你可以通过 --cfg-coef 参数指定分类器自由引导系数,默认值为 1,较高的值会使生成的语音更接近原始语音。常用的值为 3。

2. MLX

为了使用 MLX 运行 Hibiki,首先需要安装 moshi_mlx 包:

pip install -U moshi_mlx

然后可以从 kyutai-labs/moshi 获取示例文件,并通过以下命令进行翻译:

wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hibiki_crepes.mp3
python -m moshi_mlx.run_inference sample_fr_hibiki_crepes.mp3 out_en.wav --hf-repo kyutai/hibiki-1b-mlx-bf16

同样可以通过 --cfg-coef 参数指定分类器自由引导系数。

3. MLX-Swift

kyutai-labs/moshi-swift 仓库包含了一个可以在 iPhone 上运行的 MLX-Swift 实现。此代码为实验性质,已在 iPhone 16 Pro 上测试通过。

4. Rust

hibiki-rs 目录包含了一个简单的 Rust 应用程序,可以根据原始音频文件生成翻译。你可以使用 --features cuda 来在 NVIDIA GPU 上运行,或者使用 --features metal 来在 Mac 上运行。

cd hibiki-rs
wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hibiki_crepes.mp3
cargo run  --features metal -r -- gen sample_fr_hibiki_crepes.mp3 out_en.wav

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值