Paraphraser:一款强大的句子改写工具

Paraphraser:一款强大的句子改写工具

paraphraser Sentence paraphrase generation at the sentence level 项目地址: https://gitcode.com/gh_mirrors/pa/paraphraser

项目介绍

Paraphraser 是一款基于深度学习的句子改写工具,旨在为用户提供一个简洁易用的API接口,帮助用户生成句子的改写版本。该项目由 Insight Data Science Artificial Intelligence 项目开发,并提供了一个在线演示平台 pair-a-phrase,用户可以通过该平台直观地体验到改写功能。

项目技术分析

模型架构

Paraphraser 的核心模型是一个双向LSTM编码器和LSTM解码器,结合了注意力机制,并使用Tensorflow框架进行训练。该模型通过大量的公开数据集进行训练,包括但不限于:

  • para-nmt-5m
  • Quora question pair
  • SNLI
  • Semeval

这些数据集的聚合为模型提供了丰富的语料库,使其在改写任务中表现出色。

训练与评估

模型在Nvidia GTX 1080显卡上进行了2个epoch的训练,并使用BLEU评分进行评估。训练过程中的Tensorboard曲线显示了模型在训练集和验证集上的表现,灰色曲线代表训练集,橙色曲线代表验证集。

未来改进方向

项目还列出了多个未来改进方向,包括:

  • 开发pip可安装包
  • 探索更深的网络层数
  • 引入循环层dropout
  • 增加数据集的扩充
  • 尝试残差层
  • 模型压缩
  • 使用字节对编码处理词汇表外的词汇

项目及技术应用场景

Paraphraser 的应用场景非常广泛,尤其适用于以下领域:

  • 内容创作:帮助内容创作者生成多样化的句子表达,提升文章的可读性和原创性。
  • 机器翻译:在机器翻译系统中,改写工具可以用于生成多种翻译候选,提高翻译的多样性和准确性。
  • 文本摘要:在文本摘要任务中,改写工具可以帮助生成更加简洁和多样化的摘要内容。
  • 问答系统:在问答系统中,改写工具可以用于生成多种问句表达,提高系统的覆盖率和准确性。

项目特点

  • 简洁易用:项目提供了一个简单直观的API接口,用户可以轻松集成到自己的应用中。
  • 强大的模型:基于双向LSTM和注意力机制的模型,能够生成高质量的改写句子。
  • 丰富的数据集:模型在多个公开数据集上进行训练,保证了改写结果的多样性和准确性。
  • 持续改进:项目列出了多个未来改进方向,表明开发者将持续优化和提升工具的性能。

如何开始使用

  1. 环境配置

    • 创建并激活conda环境:
      conda env create -f env.yml
      conda activate paraphraser-env
      
    • 安装必要的依赖:
      conda install tensorflow==1.14
      conda install spacy
      python3 -m spacy download en_core_web_sm
      
  2. 下载模型

    • 这里下载模型检查点,并将其重命名为checkpoints,放置在/paraphraser/paraphraser目录下。
  3. 运行推理脚本

    cd paraphraser
    python inference.py --checkpoint=checkpoints/model-171856
    

通过以上步骤,您就可以开始使用Paraphraser进行句子改写了。无论是用于内容创作、机器翻译还是其他文本处理任务,Paraphraser都能为您提供强大的支持。

paraphraser Sentence paraphrase generation at the sentence level 项目地址: https://gitcode.com/gh_mirrors/pa/paraphraser

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
N-甲基吡咯烷酮(NMP)是一种具有高极性、高沸点、低粘度、低挥发性、高热稳定性和化学稳定性的非质子溶剂。作为高性能溶剂,其广泛应用于锂离子电池制造、化工生产等多个领域。 NMP原料来源可分为合成NMP与再生NMP两类。合成NMP指通过化学合成工艺制得的NMP产品,其工业生产路线以γ-丁内酯(GBL)与单甲基胺为原料经缩合反应生成。再生NMP则指对使用后的NMP废液进行回收提纯 NMP废液特性: 高浓度NMP:废液中NMP含量较高,因NMP强溶解性可能混合多种有机物及无机物 低毒性但具刺激性:虽较其他有机溶剂毒性低,但高浓度接触仍对人体皮肤及眼睛产生刺激 处理难度大:因高沸点与强溶解性,单纯物理蒸发或自然挥发难以处理,需采用特定回收净化技术 严格环保要求:尤其在电池制造领域,NMP纯度要求极高,再生处理后的NMP纯度须达到同等标准,否则将影响产品质量与环境安全 NMP回收模式: 委托加工模式:回收企业为客户提供闭环循环服务,直接回收客户废液并提纯后返还。该模式可降低客户处理成本,实现资源循环利用 购销模式:回收企业采购上游供应商的NMP废液,经处理提纯后销售给下游客户,通过购销差价盈利 内部循环模式:大型企业集团自建回收处理设施,实现废液中NMP的内部循环利用。例如三菱重工在国内外建有溶剂回收装置,特别是随着全球锂电池需求增长,其海外工厂陆续采用现场回收设备,无需第三方处理即可实现NMP的直接回收提纯。 据QYResearch调研团队最新报告“全球NMP回收服务市场报告2025-2031”显示,预计2031年全球NMP回收服务市场规模将达到106万吨,未来几年年复合增长率CAGR为10.0%。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔旭澜Renata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值