Vox Box: 开源文本转语音和语音转文本服务器
项目介绍
Vox Box 是一个开源的文本转语音(TTS)和语音转文本(STT)服务器,支持与 OpenAI API 兼容的多种后端,如 Whisper、FunASR、Bark 和 CosyVoice。它旨在为开发者提供一个方便的工具,以构建和部署具有高效率语音处理能力的应用程序。
项目快速启动
以下是快速启动 Vox Box 的步骤:
首先,确保你的系统满足以下要求:
- Python 3.10 或更高版本
- 如果使用 GPU,需要安装以下 NVIDIA 库:cuBLAS for CUDA 12 和 cuDNN 9 for CUDA 12
接着,使用 pip 安装 Vox Box:
pip install vox-box
对于 MacOS 用户,还需要安装 openfst
、pynini
和 wetextprocessing
:
brew install openfst
export CPLUS_INCLUDE_PATH=$(brew --prefix openfst)/include
export LIBRARY_PATH=$(brew --prefix openfst)/lib
pip install pynini==2.1.6
pip install wetextprocessing==1.0.4.1
启动 Vox Box 服务器:
vox-box start --huggingface-repo-id Systran/faster-whisper-small --data-dir ./cache/data-dir --host 0.0.0.0 --port 80
确保根据需要替换 --data-dir
和 --port
参数。
应用案例和最佳实践
文本转语音(TTS)案例
curl http://localhost/v1/audio/speech \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "cosyvoice",
"input": "Hello world",
"voice": "English Female"
}'
语音转文本(STT)案例
curl https://localhost/v1/audio/transcriptions \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F "file=@/path/to/file/audio.mp3" \
-F "model=whisper-large-v3"
最佳实践
- 使用 Docker 容器化部署,以便于管理和扩展。
- 确保服务器安全,例如使用 HTTPS 和适当的认证机制。
- 对接多种不同的语音模型,以适应不同的语言和场景。
典型生态项目
- Whisper: 一个由 OpenAI 开发的强大的语音识别模型。
- FunASR: 百度开源的自动语音识别框架。
- Bark: 基于深度学习的文本到语音合成系统。
- CosyVoice: 一个开源的文本到语音转换工具。
以上就是关于 Vox Box 的开源项目教程。希望对您的开发有所帮助!