探索无限深度:基于SDE的贝叶斯神经网络

探索无限深度:基于SDE的贝叶斯神经网络

项目地址:https://gitcode.com/gh_mirrors/ba/bayeSDE

在这个数字时代,人工智能和机器学习正在快速发展,其中深度学习扮演着核心角色。今天,我们为你带来一个创新的开源项目——Infinitely Deep Bayesian Neural Networks with SDEs(SDE-BNN)。这个项目利用随机微分方程(SDE)实现了无尽的深度,并提供了JAX和Pytorch的实现,让你能够构建更准确且具有不确定性的模型。

项目介绍

SDE-BNN是一个强大的库,它包含了用于JAX和Pytorch的神经ODEs以及为贝叶斯层设计的变分推断算法。该项目还包括了一个基本的JAX实现的可微分SDE求解器,对于更完整的不同iable SDE求解器,你可以参考torchsde,而对于不同的ODE求解器,则可以查阅torchdiffeq。

动态图

图片展示了在Neural ODE中连续深度隐藏单元轨迹与SDE-BNN的不确定后验动力学。

项目技术分析

项目的核心是通过SDE来描述神经网络中的隐藏单元动态。这允许网络有无穷的“深度”,并引入了不确定性,以模拟复杂的概率分布。JAXSDE提供了Ito和Stratonovich形式的SDE求解器,支持多种阶数的求解方法。而Brax则是一个基于JAX的框架,包含了可用于stax API的可组合贝叶斯层。

项目及技术应用场景

  • 回归与分类:SDE-BNN可应用于复杂的一维回归任务,例如学习多模态的后验分布。此外,它也能用于图像分类,如CIFAR-10数据集。
  • 表达能力:通过SDE-BNN,可以学习到非高斯边缘的任意表达式近似后验,提供更丰富和准确的预测。
  • 高效训练:利用STL技巧,可以在训练过程中改善收敛速度,结合梯度累积和梯度检查点,即使在内存受限的情况下也能进行有效训练。

项目特点

  • 无限深度:通过SDE,网络的深度理论上可以无限增加,这为复杂的模型结构提供了可能性。
  • 变分推断:结合贝叶斯层,SDE-BNN能够估计参数的不确定性,这对于不确定性建模和异常检测至关重要。
  • 跨平台兼容:支持JAX和Pytorch两大深度学习框架,方便开发者选择合适的工具。
  • 高效求解:提供的SDE求解器支持不同阶数的数值方法,能平衡计算精度和效率。
  • 灵活的应用:与stax API的兼容性使得它可以轻松地与其他预定义层组合,适应各种任务需求。

如果你正在寻找一种新的、能够处理复杂不确定性问题的深度学习方法,那么SDE-BNN绝对值得尝试。借助这个项目,你将能够挖掘出深度学习的更多潜力,为你的研究或应用增添新的亮点。别忘了在发表研究成果时引用SDE-BNN哦!

@article{xu2021sdebnn,
  title={Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations},
  author={Xu, Winnie and Chen, Ricky T. Q. and Li, Xuechen and Duvenaud, David},
  journal = {International Conference on Artificial Intelligence and Statistics},
  year={2022}
}

bayeSDE Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations" 项目地址: https://gitcode.com/gh_mirrors/ba/bayeSDE

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴联微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值