Awesome GPT-4 项目教程

Awesome GPT-4 项目教程

awesome-gpt4 Curated list of awesome resources, use cases and demos for GPT-4 项目地址: https://gitcode.com/gh_mirrors/awe/awesome-gpt4

项目介绍

Awesome GPT-4 是一个精心策划的资源列表,包含了 GPT-4 的各种使用案例、演示和相关文章。该项目旨在帮助开发者、研究人员和爱好者更好地理解和利用 OpenAI 的 GPT-4 模型。通过这个项目,用户可以找到各种与 GPT-4 相关的资源,包括官方文档、技术报告、演示视频以及实际应用案例。

项目快速启动

要开始使用 Awesome GPT-4 项目,首先需要克隆项目仓库到本地。以下是快速启动步骤:

1. 克隆项目仓库

git clone https://github.com/taranjeet/awesome-gpt4.git

2. 进入项目目录

cd awesome-gpt4

3. 查看项目内容

项目的主要内容包含在 README.md 文件中。你可以使用以下命令查看:

cat README.md

4. 探索资源

根据 README.md 文件中的目录结构,你可以找到各种与 GPT-4 相关的资源,包括官方博客、技术报告、演示视频等。

应用案例和最佳实践

Awesome GPT-4 项目中包含了多个实际应用案例和最佳实践,涵盖了从教育、游戏设计到医疗和法律等多个领域。以下是一些典型的应用案例:

1. 教育

  • GPT-4 在标准化考试中的表现:展示了 GPT-4 在各种标准化考试中的优异表现。
  • Duolingo 集成 GPT-4:Duolingo 利用 GPT-4 提供更智能的语言学习体验。

2. 游戏设计

  • 生成乒乓球游戏:使用 GPT-4 在 60 秒内生成一个完整的乒乓球游戏。
  • 生成贪吃蛇游戏:即使没有编程经验,也可以使用 GPT-4 生成一个功能完善的贪吃蛇游戏。

3. 医疗

  • 药物发现:利用 GPT-4 进行药物发现,加速新药研发过程。
  • 自动化医疗编码系统:构建一个基本的自动化医疗编码系统,提高医疗数据处理的效率。

4. 法律

  • 生成一键式诉讼:使用 GPT-4 生成一键式诉讼文件,简化法律流程。
  • 通过上传 PDF 讨论法律案件:用户可以上传法律案件的 PDF 文件,GPT-4 会自动分析并提供相关讨论。

典型生态项目

Awesome GPT-4 项目还列出了一些与 GPT-4 相关的典型生态项目,这些项目进一步扩展了 GPT-4 的应用场景和功能。以下是一些典型的生态项目:

1. GPT-4 Vision

  • 实时扑克建议:使用 GPT-4 Vision 提供实时扑克建议。
  • 屏幕共享与 GPT-4:通过屏幕共享与 GPT-4 进行交互,实现更直观的应用。

2. GPT-4 Turbo

  • GPT-4 Turbo 演示:展示了 GPT-4 Turbo 的快速响应能力。
  • 嵌入整个论文和书籍:利用 GPT-4 Turbo 的 128k 上下文窗口,嵌入整个论文和书籍进行分析。

3. GPT-4 Vision + TTS API

  • AI 体育解说员:结合 GPT-4 Vision 和 TTS API,生成 AI 体育解说员。
  • 自动生成视频配音:使用 GPT-4 Vision 和 TTS API 自动为视频生成配音。

通过这些生态项目,开发者可以进一步探索 GPT-4 的潜力,并将其应用于更多实际场景中。

awesome-gpt4 Curated list of awesome resources, use cases and demos for GPT-4 项目地址: https://gitcode.com/gh_mirrors/awe/awesome-gpt4

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
### 关于 Awesome GPT Awesome GPT 是一个集合了多种资源、工具以及项目的列表,旨在帮助开发者更好地理解和应用大型语言模型(LLM)。这些 LLMs 如今被广泛应用于自然语言处理领域,能够执行诸如文本生成、翻译等多种任务。通过 Awesome GPT 列表可以获取到有关训练、部署和优化这类模型的最佳实践和技术文档[^1]。 ```python import transformers as trf model_name = "gpt2" tokenizer = trf.GPT2Tokenizer.from_pretrained(model_name) model = trf.GPT2Model.from_pretrained(model_name) text = "Once upon a time," tokens = tokenizer.encode(text, return_tensors='pt') output = model(tokens) ``` 这段 Python 代码展示了如何利用 Hugging Face 的 `transformers` 库加载预训练好的 GPT-2 模型并对其进行简单的推理操作[^1]。 ### 关于 Zotero Zotero 是一款开源的文献管理软件,在信息技术环境中特别适用于研究人员管理和分享研究资料。它允许用户收集来自不同在线数据库的文章和其他形式的信息;自动提取元数据如作者名、出版年份等;支持创建个人图书馆,并能方便地插入参考文献至论文写作中去[^2]。 #### 安装 Zotero Connectors 浏览器扩展程序以便更高效地捕获网页上的学术资源: 对于 Firefox 或 Chrome 用户来说,安装 Zotero Connector 可极大地方便从网络上保存 PDF 文件或者其他类型的文件进入 Zotero 数据库内。一旦完成安装之后,当浏览期刊网站或其他含有有价值信息的地方时,只需点击浏览器顶部的小书图标即可轻松添加条目[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴联微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值