开源项目推荐:OpenFace - 深度学习面部识别利器

开源项目推荐:OpenFace - 深度学习面部识别利器

项目地址:https://gitcode.com/gh_mirrors/op/openface

项目介绍

OpenFace 是一个免费且开源的基于深度神经网络的面部识别库。该项目由卡内基梅隆大学的研究团队开发,旨在提供一种通用的解决方案,涵盖桌面和移动平台的应用场景。OpenFace 提供了一系列工具和演示,涵盖了从批量图像处理到实时Web应用程序的各种需求。

项目技术分析

OpenFace 库的核心是其高效的深度神经网络模型,能够从单张或多张图片中提取面部特征,并进行高精度的面部识别。该库集成了多个第三方项目,如 Atcold 的 TripletEmbedding 和 Facebook 的 fbnn,以增强其性能和功能。此外,它还包括了一个预先训练好的模型,用于68个关键点的人脸检测。

项目结构清晰,包括用于批处理表示的 batch-represent 工具,实时Web演示的 demos/web 目录,以及用于比较、可视化和分类的多种脚本。开发人员还可以利用 training 目录中的脚本来训练新的神经网络模型。

项目及技术应用场景

OpenFace 的应用广泛,可以用于以下场景:

  1. 实时视频流分析:在监控、社交媒体或者会议环境中实现实时面部识别。
  2. 移动应用开发:在手机或平板电脑上构建人脸识别应用。
  3. 安全系统:通过面部识别实现门禁或设备解锁。
  4. 市场研究:分析消费者行为,例如对广告的反应或情绪状态。
  5. 社交媒体分析:自动识别并标记用户上传的照片中的人物。

项目特点

  • 开源免费:基于Apache 2.0 许可证,允许商业和个人自由使用和修改。
  • 跨平台:支持Windows、Linux和Mac OS X,适用于桌面和移动端。
  • 高效准确:采用先进的深度学习算法,提供高精度的面部识别。
  • 丰富的示例和文档:提供了详细的API文档和多个演示脚本,便于快速上手。
  • 社区支持:有活跃的邮件列表和Gitter聊天室,方便开发者交流和解决问题。

如果您正在寻找一个强大、灵活且易于使用的面部识别解决方案,OpenFace 绝对值得您尝试。无论是学术研究还是商业开发,OpenFace 都能成为您强有力的技术支撑。立即加入这个充满活力的社区,开启您的面部识别之旅吧!

openface Face recognition with deep neural networks. openface 项目地址: https://gitcode.com/gh_mirrors/op/openface

代码是调用开源SDk的FaceCore关键代码。附件中有详细的接口调用说明 FaceCore人脸识别开放平台 (SERVICE INTERFACE PLATFORM)是基于人脸检测、比对核心业务技术的服务平台。平台可为外部合作伙伴提供基于高精度人脸识别技术为基础的相关服务,例如Api、人脸识别、数据安全等。作为人脸识别的重要开发途径,FaceCore平台将推动各行各业定制、创新、进化,并最终促成新商业文明生态圈的建立。我们的使命是把人脸识别技术、规范等一系列核心技术基础服务,像水、电、煤一样输送给所有需要的合作伙伴、开发者、社区媒体、安全机构和各行各业。帮助社会各界通过使用此平台获得更丰厚的商业价值。 服务器测试接口: /api/hello/ 服务器测试接口,返回服务器当前时间。 人脸比对、识别接口: /api/facecompare/ 根据参数FaceFeature1,FaceFeature2获取两个人脸的相似度。 /api/facedetectcount/ 根据参数FaceImage,获取图像中的人脸数量。 /api/facedetect/ 根据参数FaceImage,获取图像中的人脸、眼睛位置和特征。 /api/urlfacedetect/ 根据参数Url,获取图像中的人脸、眼睛位置和特征。 人脸存储管理接口: /api/personface/similar/ Method:POST;根据参数Feature人脸特征,返回appkey存储的全部人脸相似度。 /api/personface/getall/ Method:GET;返回appkey存储的全部人脸。 /api/personface/{id} Method:GET;返回指定id人脸详细信息。 /api/personface/ Method:POST;添加一个人脸信息。 /api/personface/ Method:PUT;修改一个人脸信息。 /api/personface/{id} Method:DELETE;删除一个人脸信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅尉艺Maggie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值