推荐开源项目:Open 3D Mannequin - 精彩的3D角色控制器

推荐开源项目:Open 3D Mannequin - 精彩的3D角色控制器

去发现同类优质开源项目:https://gitcode.com/

项目封面图

在寻找一个高效的3D角色控制器来提升你的Godot游戏开发体验吗?Open 3D Mannequin正是你需要的开源解决方案。这个项目提供了一个全方位的3D人物模型和控制器,为Godot游戏引擎而设计。

项目介绍

Open 3D Mannequin是一个专为Godot游戏引擎打造的开源3D角色及其控制器。它支持键盘和游戏手柄操作,具备自动旋转或由操纵杆控制的相机系统。这个项目不仅包括一个精细的角色模型,还有一套巧妙的逻辑系统,用于处理角色的移动和交互。

项目技术分析

该项目的核心是两个关键场景:

  • CameraRig.tscn - 一个带有状态机的3D相机架设系统,可以实现瞄准模式。
  • Player.tscn - 包含了玩家移动的逻辑,同时包含CameraRig实例。角色被设计成一个KinematicBody,具备碰撞检测和不同状态下的行为管理。

角色动画基于有限状态机原理,允许开发者通过修改状态机轻松调整玩家和相机的行为。此外,角色的骨骼动画采用了一种名为“ephemeral rigs”的创新方法,模仿了Richard Lico在2018年GDC演讲中介绍的《Animating Quill》中的概念。

项目及技术应用场景

无论你是新手还是经验丰富的开发者,Open 3D Mannequin都能帮助你快速启动第三人称游戏项目。只需简单地将Player场景引入到你的游戏中,并根据需求进行配置,就可以拥有一个完整的游戏角色和相机控制系统。它特别适用于平台冒险、角色扮演游戏(RPG)或者任何需要动态角色操控的3D游戏。

项目特点

  • 兼容性:支持Godot 3.2及以上版本。
  • 双重控制器:支持键盘和游戏手柄输入。
  • 灵活的相机系统:自动旋转或手动控制的相机视角。
  • 动画扩展:易于添加新的状态和功能,如挂钩射击扩展。
  • 开放源代码:MIT许可下开放源代码,艺术资源则遵循CC BY 4.0授权。
  • 社区支持:GDQuest提供的免费教程、新闻以及付费课程,助你进一步提升技能。

不要错过这个机会,利用Open 3D Mannequin为你的下一个Godot项目注入活力,让它成为你的游戏开发利器!立即加入Discord社区,关注Twitter,并订阅YouTube频道获取更多精彩内容。

去发现同类优质开源项目:https://gitcode.com/

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎情卉Desired

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值