探索NSFW数据源:一个开放的资源库

探索NSFW数据源:一个开放的资源库

nsfw_data_source_urlsCollection of NSFW images URLs for the purposes of training an NSFW Image Classifier项目地址:https://gitcode.com/gh_mirrors/ns/nsfw_data_source_urls

本文将为您揭开项目的神秘面纱,这是一个收集非安全工作环境(Not Safe For Work)图像数据源的开源项目,对于那些在人工智能、计算机视觉和深度学习领域工作的开发者来说,这是一个极具价值的工具。

项目简介

nsfw_data_source_urls是一个GitHub仓库,由开发者EBazarov维护,它整理并提供了大量的网络公开数据集链接,这些数据集主要用于训练和测试NSFW场景的检测算法。通过这些数据,研究者和工程师可以构建模型来识别不适宜的工作或公共场合的内容,从而实现自动过滤或警告系统。

技术分析

该项目的核心在于其数据集合。这些数据源包括图片URL列表,涵盖了各种不同的NSFW类别,如成人内容、暴力或其他敏感信息。每个数据集都有清晰的标签和分类,便于机器学习算法进行有监督的学习。

  • 数据质量:由于数据来自公开互联网,因此具有多样性,但同时也可能存在质量参差不齐的问题。在使用时需要进行预处理和清洗,确保模型训练的有效性。

  • API 友好:项目以JSON格式提供数据,易于解析,并可方便地集成到各类编程语言中,简化了数据获取流程。

  • 合规性:使用这些数据集时,请务必遵守当地法律法规及平台政策,确保合法合规使用。

应用场景

  1. 内容审核:社交媒体平台和在线社区可以利用这些数据来训练模型,自动筛查和移除不当内容,保护用户免受有害信息的影响。

  2. 隐私保护:开发浏览器插件或应用程序,帮助用户自动屏蔽NSFW内容,提升在线体验。

  3. 学术研究:为研究人员提供大量样本,以便进行计算机视觉和深度学习领域的前沿探索,推动技术进步。

  4. 企业解决方案:为企业提供定制化的信息安全解决方案,提高网络安全防护能力。

项目特点

  • 开放源码:所有数据源和项目的代码都是开放的,鼓励贡献和协作。

  • 持续更新:随着网络环境的变化,项目会不断添加新的数据源,保持其时效性。

  • 跨领域适用:无论您是AI新手还是经验丰富的开发者,都能找到适合您的应用场景。

结语

nsfw_data_source_urls项目为开发者提供了一个宝贵的资源,有助于推动内容识别技术和相关应用的发展。然而,使用这类数据也需谨慎,尊重用户隐私,遵循伦理道德。我们鼓励有兴趣的开发者深入了解此项目,将其潜力转化为有价值的解决方案。开始探索,为更安全、健康的网络环境贡献力量!

nsfw_data_source_urlsCollection of NSFW images URLs for the purposes of training an NSFW Image Classifier项目地址:https://gitcode.com/gh_mirrors/ns/nsfw_data_source_urls

使用:网络需要在图像和输出概率(评分0-1)之间过滤不适合工作的图片。评分<0.2表示图像具有较高概率是安全的。评分>0.8表明极有可能是不适合工作(NSFW)图像。我们建议开发者根据用例和图像类型的不同选择合适的阈值。根据使用情况、定义以及公差的不同会产生误差。理想情况下,开发人员应该创建一个评价集,根据“什么是安全的”对他们的应用程序进行定义,然后适合ROC曲线选择一个合适的阈值。结果可以通过微调你的数据/ uscase /定义NSFW的模型的改进。我们不提供任何结果的准确性保证。使用者适度地结合机器学习解决方案将有助于提高性能。模型描述:我们将不适合工作的图片(NSFW)作为数据集中的积极对象,适合工作的图片作为消极对象来进行训练。所有这些被训练得图片都被打上了特定的标签。所以由于数据本身的原因,我们无法发布数据集或者其他信息。我们用非常不错的名字叫“CaffeOnSpark”的架构给“Hadoop”带来深度学习算法,并且使用Spark集群来进行模型训练的实验。在此非常感谢 CaffeOnSpark 团队。深度模型算法首先在 ImageNet 上生成了1000种数据集,之后我们调整不适合工作(NSFW)的数据集比例。我们使用了50 1by2的残差网络生成网络模型。模型通过 pynetbuilder 工具以及复制残余网络的方法会产生50层网络(每层网络只有一半的过滤器)。你可以从这里获取到更多关于模型产生的信息。更深的网络或者具有更多过滤器的网络通常会更精确。我们使用剩余(residual)网络结构来训练模型,这样可以提供恰到好处的精确度,同样模型在运行以及内存上都能保持轻量级。 标签:opennsfw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值