超越笔记本:无服务器机器学习——构建批处理和实时预测服务

超越笔记本:无服务器机器学习——构建批处理和实时预测服务

serverless-ml-courseServerless Machine Learning Course for building AI-enabled Prediction Services from models and features项目地址:https://gitcode.com/gh_mirrors/se/serverless-ml-course

项目介绍

在当今的数字化时代,机器学习(ML)模型不再仅仅停留在实验室的笔记本中。企业需要将这些模型转化为实际的生产服务,以实现智能决策和业务优化。然而,构建一个端到端的机器学习服务通常需要深厚的Kubernetes或云计算知识,这对许多开发者来说是一个巨大的挑战。

Serverless Machine Learning(无服务器机器学习)项目的出现,正是为了解决这一痛点。该项目旨在让开发者无需成为Kubernetes或云计算专家,也能轻松构建使用ML模型进行预测的端到端服务。通过Serverless ML,开发者只需编写Python程序,这些程序可以被调度为管道运行。项目还提供了一个无服务器特征存储/模型注册表,用于管理管道生成的特征和模型。此外,项目还展示了如何通过编写Python和一些HTML来构建预测服务的用户界面。

项目技术分析

Serverless ML项目的技术栈主要包括Python、Pandas、GitHub、GitHub Actions和Hopsworks。以下是各技术组件的详细分析:

  • Python:作为项目的主要编程语言,Python提供了丰富的机器学习库和工具,使得开发者能够轻松实现各种ML任务。
  • Pandas:用于数据处理和分析,是构建ML管道的基础工具。
  • GitHub:用于代码管理,GitHub Actions则用于运行工作流,确保代码的持续集成和部署。
  • GitHub Pages:用于构建非交互式应用的用户界面。
  • Hopsworks:提供了一个无服务器特征存储和模型注册表,支持大规模数据存储和模型管理。

项目及技术应用场景

Serverless ML项目适用于以下场景:

  1. 企业内部预测服务:企业可以使用该项目快速构建和部署内部预测服务,提升业务决策的智能化水平。
  2. 实时数据分析:通过实时数据流,项目可以支持实时特征工程和模型推理,适用于需要快速响应的应用场景。
  3. 教育与培训:项目提供了丰富的教学资源和实践案例,非常适合用于机器学习和MLOps的教学与培训。

项目特点

  • 无需运维:开发者无需安装、升级或操作任何系统,只需专注于编写Python代码。
  • 无服务器架构:项目采用无服务器架构,自动管理资源,降低运维成本。
  • 丰富的教学资源:项目提供了详细的视频教程、幻灯片和实践实验室,帮助开发者快速上手。
  • 免费使用:项目使用的GitHub Actions和Hopsworks均提供慷慨的免费层,开发者无需支付费用即可运行无服务器管道和管理特征/模型/用户界面。

结语

Serverless Machine Learning项目为开发者提供了一个简单、高效的方式来构建和部署机器学习服务。无论你是企业开发者、数据科学家,还是教育工作者,该项目都能帮助你轻松实现从模型训练到生产部署的完整流程。立即注册并开始你的无服务器机器学习之旅吧!

注册链接: Serverless ML Course


加入社区:


相关资源:


其他MLOps课程:

serverless-ml-courseServerless Machine Learning Course for building AI-enabled Prediction Services from models and features项目地址:https://gitcode.com/gh_mirrors/se/serverless-ml-course

【基于Python的大麦网自动抢票工具的设计与实现】 随着互联网技术的发展,网络购票已经成为人们生活中不可或缺的一部分。尤其是在文化娱乐领域,如音乐会、演唱会、戏剧等活动中,热门演出的门票往往在开售后瞬间就被抢购一空。为了解决这个问题,本论文探讨了一种基于Python的自动抢票工具的设计与实现,旨在提高购票的成功率,减轻用户手动抢票的压力。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的第三方库,成为了开发自动化工具的理想选择。Python的特性使得开发过程高效且易于维护。本论文深入介绍了Python语言的基础知识,包括数据类型、控制结构、函数以及模块化编程思想,这些都是构建抢票工具的基础。 自动化工具在现代社会中广泛应用,尤其在网络爬虫、自动化测试等领域。在抢票工具的设计中,主要利用了自动化工具的模拟用户行为、数据解析和定时任务等功能。本论文详细阐述了如何使用Python中的Selenium库来模拟浏览器操作,通过识别网页元素、触发事件,实现对大麦网购票流程的自动化控制。同时,还讨论了BeautifulSoup和requests库在抓取和解析网页数据中的应用。 大麦网作为国内知名的票务平台,其网站结构和购票流程对于抢票工具的实现至关重要。论文中介绍了大麦网的基本情况,包括其业务模式、用户界面特点以及购票流程,为工具的设计提供了实际背景。 在系统需求分析部分,功能需求主要集中在自动登录、监控余票、自动下单和异常处理等方面。抢票工具需要能够自动填充用户信息,实时监控目标演出的票务状态,并在有票时立即下单。此外,为了应对可能出现的网络延迟或服务器错误,工具还需要具备一定的错误恢复能力。性能需求则关注工具的响应速度和稳定性,要求在大量用户同时使用时仍能保持高效运行。 在系统设计阶段,论文详细描述了整体架构,包括前端用户界面、后端逻辑处理以及与大麦网交互的部分。在实现过程中,采用了多线程技术以提高并发性,确保在抢票关键环节的快速响应。此外,还引入了异常处理机制,以应对网络故障或程序错误。 测试与优化是确保抢票工具质量的关键步骤。论文中提到了不同场景下的测试策略,如压力测试、功能测试和性能测试,以验证工具的有效性和稳定性。同时,通过对抢票算法的不断优化,提高工具的成功率。 论文讨论了该工具可能带来的社会影响,包括对消费者体验的改善、对黄牛现象的抑制以及可能引发的公平性问题。此外,还提出了未来的研究方向,如增加多平台支持、优化抢票策略以及考虑云服务的集成,以进一步提升抢票工具的实用性。 本论文全面介绍了基于Python的大麦网自动抢票工具的设计与实现,从理论到实践,从需求分析到系统优化,为读者提供了一个完整的开发案例,对于学习Python编程、自动化工具设计以及理解网络购票市场的运作具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘俭渝Erik

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值