深度研究助手安装与配置指南
项目基础介绍
本项目是一个AI驱动的深度研究助手,能够针对任何主题进行迭代深入的探究。它通过结合搜索引擎、网页抓取和大型语言模型来实现这一功能。该项目的目标是提供一个简洁的实现,以便用户理解和在此基础上进一步开发。
主要编程语言:TypeScript 和 JavaScript。
项目使用的关键技术和框架
- 搜索引擎和内容提取: 使用Firecrawl API进行网页搜索和内容提取。
- 大型语言模型: 利用OpenAI的o3 mini模型(或其他兼容模型)生成针对性的搜索查询。
- 深度与广度控制: 可配置的参数,用于控制研究的深度和广度。
- 并发处理: 支持并行处理多个搜索和结果,提高效率。
准备工作
在开始安装之前,请确保您的系统中已经安装了以下环境:
- Node.js环境
同时,您需要获取以下API的密钥:
- Firecrawl API密钥
- OpenAI API密钥(或自托管的语言模型)
安装步骤
-
克隆项目仓库到本地:
git clone https://github.com/dzhng/deep-research.git cd deep-research
-
安装项目依赖:
npm install
-
设置环境变量:
在项目根目录下创建一个
.env.local
文件,并添加以下内容(将your_firecrawl_key
和your_openai_key
替换为您的API密钥):FIRECRAWL_KEY=your_firecrawl_key OPENAI_KEY=your_openai_key
如果您使用自托管的LLM,您需要取消注释并设置
OPENAI_ENDPOINT
和OPENAI_MODEL
。 -
(可选)如果您打算使用Docker:
- 克隆项目仓库
- 将
.env.example
重命名为.env.local
并设置API密钥 - 运行
npm install
- 运行Docker镜像:
docker compose up -d
- 在Docker服务中执行
npm run docker
:docker exec -it deep-research npm run docker
-
运行研究助手:
npm start
根据提示输入您的搜索查询,指定研究的广度和深度,回答后续问题以细化研究方向。系统将执行搜索查询,处理搜索结果,并根据发现递归深入探索,最后生成一个全面的Markdown报告。
按照上述步骤操作,您就可以成功安装和配置深度研究助手项目了。