深度研究助手安装与配置指南

深度研究助手安装与配置指南

deep-research An AI-powered research assistant that performs iterative, deep research on any topic by combining search engines, web scraping, and large language models. The goal of this repo is to provide the simplest implementation of a deep research agent - e.g. an agent that can refine its research direction overtime and deep dive into a topic. deep-research 项目地址: https://gitcode.com/gh_mirrors/deeprese/deep-research

项目基础介绍

本项目是一个AI驱动的深度研究助手,能够针对任何主题进行迭代深入的探究。它通过结合搜索引擎、网页抓取和大型语言模型来实现这一功能。该项目的目标是提供一个简洁的实现,以便用户理解和在此基础上进一步开发。

主要编程语言:TypeScript 和 JavaScript。

项目使用的关键技术和框架

  • 搜索引擎和内容提取: 使用Firecrawl API进行网页搜索和内容提取。
  • 大型语言模型: 利用OpenAI的o3 mini模型(或其他兼容模型)生成针对性的搜索查询。
  • 深度与广度控制: 可配置的参数,用于控制研究的深度和广度。
  • 并发处理: 支持并行处理多个搜索和结果,提高效率。

准备工作

在开始安装之前,请确保您的系统中已经安装了以下环境:

  • Node.js环境

同时,您需要获取以下API的密钥:

  • Firecrawl API密钥
  • OpenAI API密钥(或自托管的语言模型)

安装步骤

  1. 克隆项目仓库到本地:

    git clone https://github.com/dzhng/deep-research.git
    cd deep-research
    
  2. 安装项目依赖:

    npm install
    
  3. 设置环境变量:

    在项目根目录下创建一个.env.local文件,并添加以下内容(将your_firecrawl_keyyour_openai_key替换为您的API密钥):

    FIRECRAWL_KEY=your_firecrawl_key
    OPENAI_KEY=your_openai_key
    

    如果您使用自托管的LLM,您需要取消注释并设置OPENAI_ENDPOINTOPENAI_MODEL

  4. (可选)如果您打算使用Docker:

    • 克隆项目仓库
    • .env.example重命名为.env.local并设置API密钥
    • 运行npm install
    • 运行Docker镜像:docker compose up -d
    • 在Docker服务中执行npm run dockerdocker exec -it deep-research npm run docker
  5. 运行研究助手:

    npm start
    

    根据提示输入您的搜索查询,指定研究的广度和深度,回答后续问题以细化研究方向。系统将执行搜索查询,处理搜索结果,并根据发现递归深入探索,最后生成一个全面的Markdown报告。

按照上述步骤操作,您就可以成功安装和配置深度研究助手项目了。

deep-research An AI-powered research assistant that performs iterative, deep research on any topic by combining search engines, web scraping, and large language models. The goal of this repo is to provide the simplest implementation of a deep research agent - e.g. an agent that can refine its research direction overtime and deep dive into a topic. deep-research 项目地址: https://gitcode.com/gh_mirrors/deeprese/deep-research

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

庞锦宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值