推荐开源项目:sklearn-onnx - 将Scikit-Learn模型转换为ONNX

推荐开源项目:sklearn-onnx - 将Scikit-Learn模型转换为ONNX

sklearn-onnxConvert scikit-learn models and pipelines to ONNX项目地址:https://gitcode.com/gh_mirrors/sk/sklearn-onnx

项目简介

是一个Python库,旨在将流行的机器学习框架Scikit-Learn的模型转换为开放神经网络交换(ONNX)格式。此项目由Microsoft和ONNX社区共同维护,目的是促进不同AI平台之间的模型互操作性,让开发者可以轻松地在各种推理引擎上部署和执行预训练的Scikit-Learn模型。

技术分析

ONNX:开放神经网络交换标准

ONNX是一种开放标准,用于描述机器学习模型的不同计算图结构。它支持多种框架,如TensorFlow, PyTorch, MXNet等。通过将模型转换为ONNX格式,我们可以打破框架间的壁垒,实现跨平台的模型运行。

sklearn-onnx:连接Scikit-Learn与ONNX

sklearn-onnx 提供了一个简单易用的API,允许用户将Scikit-Learn的模型直接转换为ONNX。它包括了对大多数Scikit-Learn的分类、回归和预处理算法的支持。转换过程会自动构建ONNX图形表示,并验证生成的模型是否正确。

特点

  1. 兼容广泛:支持广泛的Scikit-Learn模型和函数。
  2. 自动化转换:只需一行代码即可完成模型转换,无需手动编写ONNX图形结构。
  3. 验证与测试:转换后的ONNX模型会经过严格的验证,确保与原始Scikit-Learn模型行为一致。
  4. 性能优化:转换后的模型可以在支持ONNX的高性能推理引擎上运行,如ONNX Runtime,以提高预测速度。

应用场景

  • 多平台部署:如果你需要在不同的硬件或软件环境中部署Scikit-Learn模型,sklearn-onnx可以简化这个过程。
  • 边缘设备推理:对于资源有限的边缘设备,ONNX模型通常可以更好地适应低功耗环境。
  • 持续集成/持续交付(CI/CD):当你的工作流程中包含了多个AI框架时, ONNX提供了一种统一的方式来管理和测试模型。
  • 性能对比:你可以比较不同推理引擎(如TensorRT、TensorFlow Serving等)对同个模型的表现。

开始使用

要开始使用sklearn-onnx,首先需要安装该库:

pip install sklearn-onnx

然后,你可以按照以下步骤将Scikit-Learn模型转换为ONNX:

import onnxmltools
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier

# 训练模型
iris = datasets.load_iris()
clf = RandomForestClassifier()
clf.fit(iris.data, iris.target)

# 转换模型
onnx_clf = onnxmltools.convert_sklearn(clf, initial_types=[('input', iris.feature_names)])
onnxmltools.utils.save_model(onnx_clf, 'random_forest.onnx')

结论

sklearn-onnx是Scikit-Learn用户向更广阔AI生态扩展的重要桥梁。它使得模型能够无缝迁移至其他平台,提升了可移植性和可部署性。无论你是想优化模型的性能还是寻求跨平台解决方案,sklearn-onnx都是值得一试的选择。现在就尝试链接中的项目,体验它的强大功能吧!

sklearn-onnxConvert scikit-learn models and pipelines to ONNX项目地址:https://gitcode.com/gh_mirrors/sk/sklearn-onnx

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如雅Brina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值