XtremeDistilTransformers 项目教程

XtremeDistilTransformers 项目教程

xtreme-distil-transformers XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale 项目地址: https://gitcode.com/gh_mirrors/xt/xtreme-distil-transformers

1. 项目介绍

XtremeDistilTransformers 是由微软开发的一个开源框架,旨在将大规模的多语言神经网络模型压缩成小而高效的模型。该框架支持多种预训练语言模型(如 BERT、Electra、Roberta)作为教师模型,并可以将这些模型压缩成更小的学生模型。XtremeDistilTransformers 提供了统一的 API,支持 TensorFlow 2.3 和 HuggingFace Transformers,适用于多语言文本分类和序列标注任务。

2. 项目快速启动

安装依赖

首先,确保你已经安装了所需的依赖库。可以通过以下命令安装:

pip install -r requirements.txt

示例代码:序列标注任务

以下是一个简单的示例代码,用于在 Wiki NER 数据集上进行序列标注任务:

PYTHONHASHSEED=42 python run_xtreme_distil.py \
    --task $$PT_DATA_DIR/datasets/NER \
    --model_dir $$PT_OUTPUT_DIR \
    --seq_len 32 \
    --transfer_file $$PT_DATA_DIR/datasets/NER/unlabeled.txt \
    --do_NER \
    --pt_teacher TFBertModel \
    --pt_teacher_checkpoint bert-base-multilingual-cased \
    --student_distil_batch_size 256 \
    --student_ft_batch_size 32 \
    --pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased \
    --distil_chunk_size 10000 \
    --teacher_model_dir $$PT_OUTPUT_DIR \
    --distil_multi_hidden_states \
    --distil_attention \
    --compress_word_embedding \
    --freeze_word_embedding \
    --opt_policy mixed_float16

示例代码:文本分类任务

以下是一个简单的示例代码,用于在 MNLI 数据集上进行文本分类任务:

PYTHONHASHSEED=42 python run_xtreme_distil.py \
    --task $$PT_DATA_DIR/glue_data/MNLI \
    --model_dir $$PT_OUTPUT_DIR \
    --seq_len 128 \
    --transfer_file $$PT_DATA_DIR/glue_data/MNLI/train.tsv \
    --do_pairwise \
    --pt_teacher TFElectraModel \
    --pt_teacher_checkpoint google/electra-base-discriminator \
    --student_distil_batch_size 128 \
    --student_ft_batch_size 32 \
    --pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased \
    --teacher_model_dir $$PT_OUTPUT_DIR \
    --teacher_batch_size 32 \
    --distil_chunk_size 300000 \
    --opt_policy mixed_float16

3. 应用案例和最佳实践

多语言文本分类

XtremeDistilTransformers 可以用于多语言文本分类任务,通过将大规模的预训练模型压缩成更小的模型,可以在资源受限的环境中高效运行。例如,可以使用该框架将 BERT 模型压缩成更小的模型,并在多语言数据集上进行分类任务。

序列标注

在序列标注任务中,XtremeDistilTransformers 可以将复杂的序列标注模型压缩成更小的模型,从而提高推理速度。例如,可以在命名实体识别(NER)任务中使用该框架,将多语言的 BERT 模型压缩成更小的模型,并在 Wiki NER 数据集上进行训练和推理。

最佳实践

  • 选择合适的教师模型:根据任务需求选择合适的预训练模型作为教师模型,如 BERT、Electra 或 Roberta。
  • 调整超参数:根据数据集的大小和复杂度,调整超参数如 seq_lenbatch_size 等,以获得最佳的压缩效果。
  • 使用混合精度训练:通过启用 opt_policy mixed_float16,可以加速训练过程并减少内存占用。

4. 典型生态项目

HuggingFace Transformers

HuggingFace Transformers 是一个广泛使用的开源库,提供了大量的预训练语言模型和工具。XtremeDistilTransformers 与 HuggingFace Transformers 兼容,可以利用其丰富的模型资源进行模型压缩和推理。

TensorFlow

TensorFlow 是一个强大的深度学习框架,支持大规模模型的训练和推理。XtremeDistilTransformers 基于 TensorFlow 2.3 开发,可以充分利用 TensorFlow 的生态系统进行模型压缩和优化。

ONNX Runtime

ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速。XtremeDistilTransformers 提供了 ONNX 格式的模型导出功能,可以在 ONNX Runtime 上进行高效的推理。

通过结合这些生态项目,XtremeDistilTransformers 可以在不同的应用场景中发挥其优势,提供高效、灵活的模型压缩和推理解决方案。

xtreme-distil-transformers XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale 项目地址: https://gitcode.com/gh_mirrors/xt/xtreme-distil-transformers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如雅Brina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值