XtremeDistilTransformers 项目使用教程

XtremeDistilTransformers 项目使用教程

xtreme-distil-transformersXtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale项目地址:https://gitcode.com/gh_mirrors/xt/xtreme-distil-transformers

1. 项目的目录结构及介绍

xtreme-distil-transformers/
├── README.md
├── requirements.txt
├── setup.py
├── xtremedistil/
│   ├── __init__.py
│   ├── config.py
│   ├── data.py
│   ├── model.py
│   ├── train.py
│   └── utils.py
├── examples/
│   ├── example_train.py
│   └── example_inference.py
├── tests/
│   ├── test_data.py
│   └── test_model.py
└── docs/
    ├── index.md
    └── usage.md

目录结构介绍

  • README.md: 项目的基本介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 项目的安装脚本。
  • xtremedistil/: 核心代码目录,包含项目的各个模块。
    • init.py: 初始化文件。
    • config.py: 配置文件,定义项目的各种配置参数。
    • data.py: 数据处理模块,负责数据的加载和预处理。
    • model.py: 模型定义模块,包含模型的架构和相关操作。
    • train.py: 训练模块,负责模型的训练过程。
    • utils.py: 工具模块,包含一些通用的辅助函数。
  • examples/: 示例代码目录,包含训练和推理的示例脚本。
    • example_train.py: 训练示例脚本。
    • example_inference.py: 推理示例脚本。
  • tests/: 测试代码目录,包含项目的单元测试。
    • test_data.py: 数据处理模块的测试脚本。
    • test_model.py: 模型模块的测试脚本。
  • docs/: 文档目录,包含项目的详细文档。
    • index.md: 文档首页。
    • usage.md: 使用说明文档。

2. 项目的启动文件介绍

项目的启动文件主要位于 examples/ 目录下,包括 example_train.pyexample_inference.py

example_train.py

该文件是训练模型的示例脚本,用户可以通过运行该脚本来启动模型的训练过程。脚本中包含了数据加载、模型初始化、训练循环等步骤。

example_inference.py

该文件是推理模型的示例脚本,用户可以通过运行该脚本来使用训练好的模型进行推理。脚本中包含了模型加载、数据预处理、推理过程等步骤。

3. 项目的配置文件介绍

项目的配置文件主要位于 xtremedistil/config.py 中。该文件定义了项目的各种配置参数,包括模型参数、训练参数、数据路径等。

config.py 文件内容示例

class Config:
    def __init__(self):
        self.batch_size = 32
        self.learning_rate = 2e-5
        self.num_epochs = 3
        self.data_path = "data/train.csv"
        self.model_name = "bert-base-uncased"
        self.output_dir = "output/"

配置参数介绍

  • batch_size: 批处理大小,控制每次训练时使用的样本数量。
  • learning_rate: 学习率,控制模型参数更新的步长。
  • num_epochs: 训练轮数,控制模型训练的总次数。
  • data_path: 数据路径,指定训练数据的存储位置。
  • model_name: 预训练模型名称,指定使用的预训练模型。
  • output_dir: 输出目录,指定训练结果和模型的保存路径。

通过修改 config.py 中的参数,用户可以自定义训练和推理过程的配置。

xtreme-distil-transformersXtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale项目地址:https://gitcode.com/gh_mirrors/xt/xtreme-distil-transformers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万宁谨Magnus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值