等待资源就绪的利器:wait-on

等待资源就绪的利器:wait-on

wait-on wait-on is a cross-platform command line utility and Node.js API which will wait for files, ports, sockets, and http(s) resources to become available 项目地址: https://gitcode.com/gh_mirrors/wa/wait-on

在现代软件开发中,等待资源就绪是一个常见的需求。无论是等待文件生成、端口开放,还是HTTP服务启动,都需要一个可靠的工具来确保这些资源在后续操作之前已经准备就绪。wait-on 正是这样一个强大的工具,它能够跨平台地等待文件、端口、套接字以及HTTP(S)资源就绪,并且提供了丰富的配置选项和灵活的使用方式。

项目介绍

wait-on 是一个跨平台的命令行工具,它能够等待文件、端口、套接字以及HTTP(S)资源就绪。无论是在Linux、Unix、macOS还是Windows系统上,wait-on 都能稳定运行。它不仅支持命令行使用,还提供了Node.js的API接口,方便开发者集成到自己的项目中。

wait-on 的核心功能是等待资源就绪,但它不仅仅是一个简单的等待工具。它能够监控文件的变化,等待文件停止增长后再触发就绪状态;对于HTTP(S)资源,wait-on 会检查请求是否返回2XX的成功状态码;此外,wait-on 还支持反向模式,即等待资源不可用,这在等待服务关闭时非常有用。

项目技术分析

wait-on 的技术实现基于Node.js,充分利用了Node.js的事件驱动和非阻塞I/O特性。它通过轮询的方式检查资源的状态,并提供了丰富的配置选项来控制轮询间隔、超时时间、稳定性窗口等参数。

对于文件资源的等待,wait-on 会监控文件的大小变化,并在文件大小稳定一段时间后认为文件就绪。对于HTTP(S)资源的等待,wait-on 使用Axios库发送HEAD或GET请求,并根据响应状态码判断资源是否就绪。对于TCP端口和套接字的等待,wait-on 则通过Node.js的net模块进行连接测试。

wait-on 还支持通过配置文件来管理资源和选项,这使得它在复杂的项目中更加灵活和易于维护。

项目及技术应用场景

wait-on 的应用场景非常广泛,以下是一些典型的使用场景:

  1. 前端开发:在构建前端项目时,通常需要等待静态文件生成或本地服务器启动。wait-on 可以确保这些资源就绪后再执行后续的构建或测试任务。

  2. 微服务架构:在微服务架构中,服务之间的依赖关系复杂。wait-on 可以用来等待依赖的服务启动后再启动当前服务,确保服务间的依赖关系正确。

  3. CI/CD流水线:在持续集成和持续部署的流水线中,wait-on 可以用来等待测试环境或生产环境的资源就绪,确保测试或部署任务在正确的环境下执行。

  4. 服务关闭:在服务关闭时,wait-on 的反向模式可以用来等待服务完全关闭后再执行后续操作,确保服务的优雅退出。

项目特点

wait-on 具有以下几个显著特点:

  1. 跨平台支持wait-on 能够在所有支持Node.js的平台上运行,包括Linux、Unix、macOS和Windows。

  2. 丰富的资源类型支持wait-on 不仅支持文件、端口、套接字等传统资源,还支持HTTP(S)资源的等待,并且可以通过配置文件灵活管理这些资源。

  3. 灵活的配置选项wait-on 提供了大量的配置选项,如轮询间隔、超时时间、稳定性窗口等,用户可以根据具体需求进行调整。

  4. 反向模式wait-on 支持反向模式,即等待资源不可用,这在等待服务关闭时非常有用。

  5. Node.js API支持wait-on 不仅支持命令行使用,还提供了Node.js的API接口,方便开发者集成到自己的项目中。

  6. 稳定性监控:对于文件资源,wait-on 会监控文件的变化,等待文件停止增长后再触发就绪状态,确保文件已经完全生成。

总之,wait-on 是一个功能强大且灵活的工具,能够帮助开发者轻松应对各种资源等待的需求。无论是在前端开发、微服务架构还是CI/CD流水线中,wait-on 都能发挥重要作用。如果你正在寻找一个可靠的资源等待工具,wait-on 绝对值得一试!

wait-on wait-on is a cross-platform command line utility and Node.js API which will wait for files, ports, sockets, and http(s) resources to become available 项目地址: https://gitcode.com/gh_mirrors/wa/wait-on

# Machine learning algorithms A collection of minimal and clean implementations of machine learning algorithms. ### Why? This project is targeting people who want to learn internals of ml algorithms or implement them from scratch. The code is much easier to follow than the optimized libraries and easier to play with. All algorithms are implemented in Python, using numpy, scipy and autograd. ### Implemented: * [Deep learning (MLP, CNN, RNN, LSTM)](mla/neuralnet) * [Linear regression, logistic regression](mla/linear_models.py) * [Random Forests](mla/ensemble/random_forest.py) * [Support vector machine (SVM) with kernels (Linear, Poly, RBF)](mla/svm) * [K-Means](mla/kmeans.py) * [Gaussian Mixture Model](mla/gaussian_mixture.py) * [K-nearest neighbors](mla/knn.py) * [Naive bayes](mla/naive_bayes.py) * [Principal component analysis (PCA)](mla/pca.py) * [Factorization machines](mla/fm.py) * [Restricted Boltzmann machine (RBM)](mla/rbm.py) * [t-Distributed Stochastic Neighbor Embedding (t-SNE)](mla/tsne.py) * [Gradient Boosting trees (also known as GBDT, GBRT, GBM, XGBoost)](mla/ensemble/gbm.py) * [Reinforcement learning (Deep Q learning)](mla/rl) ### Installation cd MLAlgorithms pip install scipy numpy pip install . ### How to run examples without installation cd MLAlgorithms python -m examples.linear_models ### How to run examples within Docker cd MLAlgorithms docker build -t mlalgorithms . docker run --rm -it mlalgorithms bash python -m examples.linear_models ### Contributing Your contributions are always welcome! Feel free to improve existing code, documentation or implement new algorithm. Please open an issue to propose your changes if they big are enough.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如雅Brina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值