changedetection.io 开源项目教程

changedetection.io 开源项目教程

changedetection.ioThe best and simplest free open source website change detection, website watcher, restock monitor and notification service. Restock Monitor, change detection. Designed for simplicity - Simply monitor which websites had a text change for free. Free Open source web page change detection, Website defacement monitoring, Price change notification项目地址:https://gitcode.com/gh_mirrors/ch/changedetection.io

1、项目介绍

changedetection.io 是一个免费开源的网页变化检测工具,旨在监控网站内容的变化并提供通知服务。该项目支持网站监控、价格变化通知以及网站篡改监控等功能。它是一个完全开源的项目,依赖于开源社区的支持,并通过订阅产品来实现可持续的开发。

2、项目快速启动

安装步骤

使用 Docker 安装
# 克隆仓库
git clone https://github.com/dgtlmoon/changedetection.io.git
cd changedetection.io

# 使用 Docker Compose 启动
docker-compose up -d
使用 Python Pip 安装
# 安装 changedetection.io
pip3 install changedetection.io

# 启动应用
changedetection.io -d /path/to/empty/data/dir -p 5000

# 访问应用
http://127.0.0.1:5000

3、应用案例和最佳实践

应用案例

  • 网站监控:监控关键网站的内容变化,如新闻网站、政府公告等。
  • 价格监控:监控电商网站的价格变化,及时获取优惠信息。
  • 网站篡改监控:监控网站是否被篡改,确保网站安全。

最佳实践

  • 配置通知:设置邮件或Discord通知,确保及时获取网站变化信息。
  • 使用代理:配置代理以避免被目标网站封禁。
  • 定期维护:定期检查和更新监控列表,确保监控的网站是最新的。

4、典型生态项目

  • Docker:用于容器化部署,简化安装和维护过程。
  • Python Pip:用于Python环境的安装和管理。
  • Discord:用于实时通知,方便团队协作。
  • Bright Data 和 Oxylabs:用于代理服务,提高监控的稳定性和安全性。

通过以上步骤和案例,您可以快速上手并充分利用 changedetection.io 项目,实现高效的网站监控和变化检测。

changedetection.ioThe best and simplest free open source website change detection, website watcher, restock monitor and notification service. Restock Monitor, change detection. Designed for simplicity - Simply monitor which websites had a text change for free. Free Open source web page change detection, Website defacement monitoring, Price change notification项目地址:https://gitcode.com/gh_mirrors/ch/changedetection.io

### ESP32-C3 离线语音识别实现方法 对于希望在ESP32-C3上实现离线语音识别的应用开发者来说,有几个关键因素需要注意。ESP32-C3是一款基于RISC-V架构的微控制器单元(MCU),具有集成Wi-Fi和蓝牙功能[^1]。 #### 选择合适的库和支持工具 为了简化开发过程并提高效率,在ESP32-C3上实施离线语音识别通常依赖于特定软件库的支持。目前市场上存在多种开源项目可以用于此目的: - **Porcupine by Picovoice**: 提供了轻量级、高性能的关键词检测引擎,支持多平台部署,包括ESP32系列设备。 - **Snowboy Hotword Detection Engine (已停止维护)**: 曾经广泛使用的唤醒词识别解决方案,不过官方已经不再更新。 - **TensorFlow Lite Micro for Microcontrollers**: 谷歌推出的微型机器学习框架,允许运行小型神经网络模型来执行诸如声音分类的任务。 考虑到长期稳定性和社区活跃度等因素,推荐优先考虑使用Picovoice提供的Porcupine服务或探索TensorFlow Lite Micro的可能性[^2]。 #### 配置硬件环境 由于ESP32-C3本身并不具备专门针对音频处理优化过的协处理器,因此需要额外配置麦克风模块以采集声波信号,并将其转换成适合后续分析的数据格式。常见的做法是采用I2S接口连接外部MEMS麦克风芯片,如INMP441等型号[^3]。 ```c #include "driver/i2s.h" #define I2S_NUM I2S_NUM_0 #define SAMPLE_RATE (16000) void setup_i2s() { i2s_config_t i2s_config = { .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX), .sample_rate = SAMPLE_RATE, .bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT, .channel_format = I2S_CHANNEL_FMT_ONLY_LEFT, .communication_format = I2S_COMM_FORMAT_I2S_MSB, .intr_alloc_flags = 0, .dma_buf_count = 8, .dma_buf_len = 64, .use_apll = false, .tx_desc_auto_clear = true, .fixed_mclk = 0 }; i2s_pin_config_t pin_config = { .bck_io_num = CONFIG_I2S_BCK_PIN, .ws_io_num = CONFIG_I2S_WS_PIN, .data_out_num = I2S_PIN_NO_CHANGE, .data_in_num = CONFIG_I2S_DATA_PIN }; i2s_driver_install(I2S_NUM, &i2s_config, 0, NULL); i2s_set_pin(I2S_NUM, &pin_config); } ``` 这段代码展示了如何初始化I2S外设以便接收来自麦克风的声音输入。实际应用中还需要进一步编写逻辑去读取这些数据并将它们传递给选定的语音识别算法进行处理[^4]。 #### 编译与烧录程序 完成上述准备工作之后就可以着手编译整个工程项目并通过USB转TTL串口适配器将固件刷入目标板卡当中去了。值得注意的是,在上传过程中应当按照正确的方式设置GPIO引脚状态——比如让IO0接地——从而确保能够顺利进入下载模式[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戴洵珠Gerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值