OmAgent 使用教程

OmAgent 使用教程

OmAgent Build multimodal language agents for fast prototype and production OmAgent 项目地址: https://gitcode.com/gh_mirrors/om/OmAgent

1. 项目介绍

OmAgent 是一个用于构建多模态语言代理的 Python 库,旨在简化代理构建过程。它将复杂的工程细节(如工作流编排、任务队列、节点优化等)隐藏在幕后,提供了一个极其易用的接口来定义你的代理。OmAgent 支持多种模态的交互,包括 VLM 模型、实时 API、计算机视觉模型、移动设备连接等,使得开发者和研究人员能够轻松构建能够处理文本、图像、视频和音频输入的代理。

2. 项目快速启动

环境准备

  • Python 版本要求:Python 3.10 或更高版本

安装

首先,安装 omagent_core:

pip install omagent-core

或者,从源代码安装最新版本:

pip install -e omagent-core

配置

  • 生成 container.yaml 配置文件:
cd examples/step1_simpleVQA
python compile_container.py
  • 配置你的 LLM 设置在 configs/llms/gpt.yml

    通过环境变量或直接修改 yml 文件来设置你的 OpenAI API 密钥或兼容端点。

    export custom_openai_key="your_openai_api_key"
    export custom_openai_endpoint="your_openai_endpoint"
    

    你也可以使用本地部署的 Ollama 来调用你自己的语言模型。

运行演示

运行简单的 VQA 演示,带网页 GUI:

cd examples/step1_simpleVQA
python run_webpage.py

在浏览器中打开 http://127.0.0.1:7860,你将看到以下界面:

3. 应用案例和最佳实践

视频问答代理

构建一个能够回答上传视频相关问题的视频理解代理。我们提供了一个基于 gradio 的应用程序。

移动个人助理

在两分钟内构建一个类似 Google Astral 的多模态个人助理。

代理操作符

我们定义了可重用的代理工作流,例如 CoT、ReAct 等,作为代理操作符。

4. 典型生态项目

  • OmDet: 用于大规模视觉语言多数据集预训练的多模态检测网络。
  • 其他相关项目和研究成果可在论文和 GitHub 仓库中找到。

OmAgent Build multimodal language agents for fast prototype and production OmAgent 项目地址: https://gitcode.com/gh_mirrors/om/OmAgent

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓尤楚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值