OmAgent 使用教程
1. 项目介绍
OmAgent 是一个用于构建多模态语言代理的 Python 库,旨在简化代理构建过程。它将复杂的工程细节(如工作流编排、任务队列、节点优化等)隐藏在幕后,提供了一个极其易用的接口来定义你的代理。OmAgent 支持多种模态的交互,包括 VLM 模型、实时 API、计算机视觉模型、移动设备连接等,使得开发者和研究人员能够轻松构建能够处理文本、图像、视频和音频输入的代理。
2. 项目快速启动
环境准备
- Python 版本要求:Python 3.10 或更高版本
安装
首先,安装 omagent_core:
pip install omagent-core
或者,从源代码安装最新版本:
pip install -e omagent-core
配置
- 生成
container.yaml
配置文件:
cd examples/step1_simpleVQA
python compile_container.py
-
配置你的 LLM 设置在
configs/llms/gpt.yml
:通过环境变量或直接修改 yml 文件来设置你的 OpenAI API 密钥或兼容端点。
export custom_openai_key="your_openai_api_key" export custom_openai_endpoint="your_openai_endpoint"
你也可以使用本地部署的 Ollama 来调用你自己的语言模型。
运行演示
运行简单的 VQA 演示,带网页 GUI:
cd examples/step1_simpleVQA
python run_webpage.py
在浏览器中打开 http://127.0.0.1:7860
,你将看到以下界面:
3. 应用案例和最佳实践
视频问答代理
构建一个能够回答上传视频相关问题的视频理解代理。我们提供了一个基于 gradio 的应用程序。
移动个人助理
在两分钟内构建一个类似 Google Astral 的多模态个人助理。
代理操作符
我们定义了可重用的代理工作流,例如 CoT、ReAct 等,作为代理操作符。
4. 典型生态项目
- OmDet: 用于大规模视觉语言多数据集预训练的多模态检测网络。
- 其他相关项目和研究成果可在论文和 GitHub 仓库中找到。