Temporal_Relational_Stock_Ranking 项目使用教程

Temporal_Relational_Stock_Ranking 项目使用教程

Temporal_Relational_Stock_Ranking Code for paper "Temporal Relational Ranking for Stock Prediction" Temporal_Relational_Stock_Ranking 项目地址: https://gitcode.com/gh_mirrors/te/Temporal_Relational_Stock_Ranking

1. 项目目录结构及介绍

Temporal_Relational_Stock_Ranking/
├── data/
│   ├── google_finance/
│   ├── sector_industry/
│   └── wikidata/
├── scripts/
│   ├── eod.py
│   ├── sector_industry.py
│   └── wikidata.py
├── training/
│   ├── rank_lstm.py
│   └── relation_rank_lstm.py
├── LICENSE
└── README.md

目录结构说明

  • data/: 存放项目所需的数据文件,包括历史股票数据、行业关系数据和维基关系数据。

    • google_finance/: 存放从Google Finance获取的历史股票数据。
    • sector_industry/: 存放行业关系数据。
    • wikidata/: 存放维基关系数据。
  • scripts/: 存放数据预处理脚本。

    • eod.py: 用于从历史股票数据中生成特征。
    • sector_industry.py: 用于生成行业关系的二进制编码。
    • wikidata.py: 用于生成维基关系的二进制编码。
  • training/: 存放训练模型的脚本。

    • rank_lstm.py: 用于训练Rank_LSTM模型。
    • relation_rank_lstm.py: 用于训练Relational Stock Ranking模型。
  • LICENSE: 项目的开源许可证文件。

  • README.md: 项目的介绍和使用说明。

2. 项目启动文件介绍

2.1 rank_lstm.py

rank_lstm.py 是用于训练Rank_LSTM模型的脚本。Rank_LSTM模型是一个基于LSTM的股票排名模型。

2.2 relation_rank_lstm.py

relation_rank_lstm.py 是用于训练Relational Stock Ranking模型的脚本。该模型结合了LSTM和关系网络,用于股票预测。

启动命令示例

# 训练Rank_LSTM模型
python rank_lstm.py

# 训练Relational Stock Ranking模型
python relation_rank_lstm.py -rn wikidata -l 16 -u 64 -a 0.1

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:

  • -rn: 指定关系类型,例如 wikidatasector_industry
  • -l: 指定LSTM的序列长度。
  • -u: 指定LSTM的单元数。
  • -a: 指定学习率。

示例配置

python relation_rank_lstm.py -rn wikidata -l 16 -u 64 -a 0.1

以上命令将使用 wikidata 关系数据,LSTM序列长度为16,单元数为64,学习率为0.1来训练Relational Stock Ranking模型。

4. 参考文献

如果使用该项目代码,请引用以下论文:

@article{feng2019temporal,
  title={Temporal relational ranking for stock prediction},
  author={Feng, Fuli and He, Xiangnan and Wang, Xiang and Luo, Cheng and Liu, Yiqun and Chua, Tat-Seng},
  journal={ACM Transactions on Information Systems (TOIS)},
  volume={37},
  number={2},
  pages={27},
  year={2019},
  publisher={ACM}
}

5. 联系方式

如有任何问题,请联系作者:fulifeng93@gmail.com。

Temporal_Relational_Stock_Ranking Code for paper "Temporal Relational Ranking for Stock Prediction" Temporal_Relational_Stock_Ranking 项目地址: https://gitcode.com/gh_mirrors/te/Temporal_Relational_Stock_Ranking

python023基于Python旅游景点推荐系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时昕海Minerva

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值