Temporal_Relational_Stock_Ranking 项目使用教程
1. 项目目录结构及介绍
Temporal_Relational_Stock_Ranking/
├── data/
│ ├── google_finance/
│ ├── sector_industry/
│ └── wikidata/
├── scripts/
│ ├── eod.py
│ ├── sector_industry.py
│ └── wikidata.py
├── training/
│ ├── rank_lstm.py
│ └── relation_rank_lstm.py
├── LICENSE
└── README.md
目录结构说明
-
data/: 存放项目所需的数据文件,包括历史股票数据、行业关系数据和维基关系数据。
- google_finance/: 存放从Google Finance获取的历史股票数据。
- sector_industry/: 存放行业关系数据。
- wikidata/: 存放维基关系数据。
-
scripts/: 存放数据预处理脚本。
- eod.py: 用于从历史股票数据中生成特征。
- sector_industry.py: 用于生成行业关系的二进制编码。
- wikidata.py: 用于生成维基关系的二进制编码。
-
training/: 存放训练模型的脚本。
- rank_lstm.py: 用于训练Rank_LSTM模型。
- relation_rank_lstm.py: 用于训练Relational Stock Ranking模型。
-
LICENSE: 项目的开源许可证文件。
-
README.md: 项目的介绍和使用说明。
2. 项目启动文件介绍
2.1 rank_lstm.py
rank_lstm.py
是用于训练Rank_LSTM模型的脚本。Rank_LSTM模型是一个基于LSTM的股票排名模型。
2.2 relation_rank_lstm.py
relation_rank_lstm.py
是用于训练Relational Stock Ranking模型的脚本。该模型结合了LSTM和关系网络,用于股票预测。
启动命令示例
# 训练Rank_LSTM模型
python rank_lstm.py
# 训练Relational Stock Ranking模型
python relation_rank_lstm.py -rn wikidata -l 16 -u 64 -a 0.1
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:
-rn
: 指定关系类型,例如wikidata
或sector_industry
。-l
: 指定LSTM的序列长度。-u
: 指定LSTM的单元数。-a
: 指定学习率。
示例配置
python relation_rank_lstm.py -rn wikidata -l 16 -u 64 -a 0.1
以上命令将使用 wikidata
关系数据,LSTM序列长度为16,单元数为64,学习率为0.1来训练Relational Stock Ranking模型。
4. 参考文献
如果使用该项目代码,请引用以下论文:
@article{feng2019temporal,
title={Temporal relational ranking for stock prediction},
author={Feng, Fuli and He, Xiangnan and Wang, Xiang and Luo, Cheng and Liu, Yiqun and Chua, Tat-Seng},
journal={ACM Transactions on Information Systems (TOIS)},
volume={37},
number={2},
pages={27},
year={2019},
publisher={ACM}
}
5. 联系方式
如有任何问题,请联系作者:fulifeng93@gmail.com。