ANN, RNN和LSTM的通俗理解

本文从人工神经网络ANN开始,详细介绍了神经元模型、激活函数和多层感知机。接着,深入讲解了递归神经网络RNN,特别是其解决时间序列数据依赖性的问题。然后,探讨了RNN的梯度消失问题,引出了长短期记忆LSTM网络,阐述了LSTM如何有效保留长期信息。最后,通过图表帮助读者直观理解ANN, RNN, LSTM的工作原理。" 82416547,851015,右侧交易指标详解与实战应用,"['技术分析', '股票交易', '指标应用', '趋势判断', '投资策略']
摘要由CSDN通过智能技术生成

1. 人工神经网络ANN

以下都是以分类任务为例来理解神经网络的相关内容。

Version 1.0: 对于一系列的输入数据input data,如果目标是线性地分成两类。

  • 最简单的情况也是大家比较熟悉的情况:对于二维数据(x1,x2)而言,就是找到一条直线把他们分隔开(如下图所示)。这条直线可以用 w 1 ∗ x 1 + w 2 ∗ x 2 + b = 0 w1*x1+w2*x2+b=0 w1x1+w2x2+b=0来表示。
    图1
    这个时候如果用神经网络的角度来看的话就是
    在这里插入图片描述

1.1 神经元模型/感知机

神经元模型就是如上图所示的对输入数据进行加权的一个模型(不太严谨,暂时先这样理解)。另外经常遇到的还有一个概念是感知机。感知机其实就是如上图所示的过程,有输入层,有神经元,最后经过激活函数得到输出。所以当提到神经元模型/感知机的时候,大家可以想一下上图这个比较形象的示意图。

1.2 激活函数

注意这里涉及到一个比较新的概念是激活函数(activation function)。主要是因为我们要做的是一个分类的任务,最后的输出希望得到的是一个类别,用数学的表示就是输出1还是0。经过神经元模型的处理以后得到的f并不是最终我们想要得到的结果,所以最后需要一个激活函数来处理一下得到最终想要的结果。对于这个简单的例子,我们可以设定说 f > = 0 f>=0 f>=0, 输出类别1; f < 0 f<0 f<0,输出类别0。看起来好像用一个step function就可以解决。但是考虑到step function 具有并不连续,不光滑这些不太好的性质,因为常常用sigmoid函数这个连续且光滑的函数来作为常用的激活函数。sigmoid函数的定义如下
s i g m o i d ( f ) = 1 1 + exp ⁡ ( − f ) sigmoid(f)=\frac{1}{1+\exp(-f)} sigmoid(f)=1+exp(f)1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值