开源项目SOMA安装与配置指南
soma Solving Optical MoCap Automatically 项目地址: https://gitcode.com/gh_mirrors/soma9/soma
1. 项目基础介绍
SOMA(Solving Optical Marker-Based MoCap Automatically)是一个自动解决光学标记运动捕捉(MoCap)的开源项目。它可以将原始的标记点云数据自动转换成SMPL-X人体模型和标记点标签。该项目旨在为运动捕捉领域的研究和开发提供一种高效、自动化的解决方案。
主要编程语言:Python
2. 项目使用的关键技术和框架
- PyTorch:用于深度学习模型训练和推理的主要框架。
- SMPL-X:一种用于表示人体模型的框架,它提供了人体参数化模型,能够根据参数生成人体网格。
- MoSh++:用于运动捕捉求解的先进算法。
- Blender:用于三维渲染的软件,本项目使用其预编译版本进行结果可视化。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 20.04.2 LTS
- Python版本:Python 3.7
- 显卡:支持CUDA的NVIDIA显卡(用于加速PyTorch运算)
安装步骤
步骤1:安装依赖库
首先,打开终端并执行以下命令安装必要的依赖项:
sudo apt install libatlas-base-dev
sudo apt install libpython3.7
sudo apt install libtbb2
步骤2:创建Python虚拟环境
为了避免与其他Python项目的依赖冲突,建议创建一个虚拟环境:
conda create -n soma python=3.7
激活虚拟环境:
conda activate soma
步骤3:安装PyTorch和相关库
安装PyTorch及其相关库,确保选择与CUDA版本兼容的版本:
pip3 install torch==1.8.2+cu102 torchvision==0.9.2+cu102 torchaudio==0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
步骤4:安装ezc3d
该项目需要ezc3d库,但ezc3d不支持通过pip安装。你需要从其GitHub仓库克隆代码并手动安装:
# 克隆ezc3d仓库
git clone https://github.com/nghorbani/ezc3d.git
# 进入ezc3d目录并安装
cd ezc3d
pip install .
步骤5:安装SMPL和SMPL-X
安装psbody.mesh库,它是SMPL和SMPL-X的基础:
# 克隆mesh仓库
git clone https://github.com/MPI-IS/mesh.git
# 进入mesh目录并安装
cd mesh
pip install .
步骤6:安装MoSh++
根据MoSh++的GitHub仓库指南安装MoSh++:
# 克隆MoSh++仓库
git clone https://github.com/nghorbani/mosh.git
# 进入MoSh++目录并按照仓库中的指南安装
cd mosh
# 安装指南通常包括编译和安装步骤
步骤7:安装项目依赖
回到SOMA项目目录,安装项目依赖:
pip install -r requirements.txt
步骤8:编译和安装SOMA
编译和安装SOMA项目:
python setup.py develop
步骤9:安装Blender(可选)
如果需要进行结果可视化,你需要安装Blender。下载Blender-2.83 LTS版本并解压到Python的site-packages目录下。
注意事项
- 确保所有步骤都在虚拟环境内完成。
- 如果遇到任何安装问题,请检查项目README文件或GitHub仓库的issue页面寻求帮助。
完成以上步骤后,你就可以开始使用SOMA项目进行开发了。
soma Solving Optical MoCap Automatically 项目地址: https://gitcode.com/gh_mirrors/soma9/soma