开源项目使用教程:问题生成器
1. 项目的目录结构及介绍
question-generation/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── model.py
├── notebooks/
│ └── example.ipynb
├── scripts/
│ ├── preprocess.py
│ └── train.py
├── tests/
│ ├── __init__.py
│ └── test_model.py
├── .gitignore
├── README.md
├── requirements.txt
├── setup.py
└── main.py
- data/: 存放数据文件,包括原始数据和处理后的数据。
- models/: 存放模型定义文件。
- notebooks/: 存放Jupyter Notebook示例文件。
- scripts/: 存放预处理和训练脚本。
- tests/: 存放测试文件。
- .gitignore: Git忽略文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装文件。
- main.py: 项目启动文件。
2. 项目的启动文件介绍
main.py
是项目的启动文件,负责初始化和运行整个项目。以下是 main.py
的主要内容:
import argparse
from models.model import QuestionGenerator
def main():
parser = argparse.ArgumentParser(description="Question Generation Tool")
parser.add_argument("--data_path", type=str, required=True, help="Path to the data file")
parser.add_argument("--model_path", type=str, required=True, help="Path to the model file")
parser.add_argument("--output_path", type=str, required=True, help="Path to the output file")
args = parser.parse_args()
generator = QuestionGenerator(args.model_path)
generator.generate_questions(args.data_path, args.output_path)
if __name__ == "__main__":
main()
- argparse: 用于解析命令行参数。
- QuestionGenerator: 模型类,负责加载模型并生成问题。
- main(): 主函数,解析参数并调用
QuestionGenerator
生成问题。
3. 项目的配置文件介绍
requirements.txt
是项目的配置文件,列出了项目运行所需的依赖包。以下是 requirements.txt
的内容示例:
numpy==1.21.2
pandas==1.3.3
torch==1.9.0
transformers==4.10.0
- numpy: 数值计算库。
- pandas: 数据处理库。
- torch: PyTorch深度学习框架。
- transformers: Hugging Face的Transformer模型库。
通过安装这些依赖包,可以确保项目正常运行。安装命令如下:
pip install -r requirements.txt
以上是关于开源项目 question-generation
的使用教程,涵盖了项目的目录结构、启动文件和配置文件的详细介绍。希望对您有所帮助!