node-bindgen 使用教程

node-bindgen 使用教程

node-bindgenEasy way to write Node.js module using Rust项目地址:https://gitcode.com/gh_mirrors/no/node-bindgen

1. 项目目录结构及介绍

node-bindgen 是一个用于简化编写 Node.js 模块的 Rust 库。以下是一般项目结构,基于 infinyon/node-bindgen 的通用布局:

.
├── Cargo.toml           # 主要的Cargo配置文件,定义依赖与元数据。
├── src                  # 源代码目录。
│   ├── lib.rs          # 主库入口,包含绑定到Node.js的功能。
│   └── ...             # 其他可能的Rust源文件。
├── build.rs             # 可选,自定义构建逻辑,本项目中通常不需要。
├── dist                 # 自动生成,编译后的Node.js模块存放地。
├── README.md            # 项目说明文档。
└── nj-cli.json          # 如果使用nj-cli工具,可能会有此配置文件,控制编译和观察模式等。
  • Cargo.toml 是项目的心脏,它包含了项目的名称、版本、作者信息以及所有必需的依赖项。
  • src/lib.rs 包含通过 #[node_bindgen] 宏标记的函数或结构体,这些会被转换成可以被Node.js调用的形式。
  • dist 目录在编译之后生成,里面存放的是可以直接在Node.js中require的二进制模块。

2. 项目的启动文件介绍

对于node-bindgen来说,没有传统的“启动文件”像其他应用程序那样。但是,从开发的角度讲,重点在于如何生成和使用该库。使用nj-cli或者直接通过Cargo命令来编译是主要的操作。例如,若要编译模块供Node.js使用,你会运行类似于下面的命令:

nj-cli build

或者直接利用Cargo进行编译(更底层的方式):

cargo build --crate-type cdylib

在Node.js应用中,通过引入编译后生成的.node文件来启动使用这些Rust编写的模块。

3. 项目的配置文件介绍

Cargo.toml

  • Cargo.toml 是管理项目配置的主要文件。这里你需要添加node-bindgen作为依赖项:
    [dependencies]
    node-bindgen = "6.0"
    
    [build-dependencies]
    node-bindgen = { version = "6.0", default-features = false, features = ["build"] }
    
    [lib]
    crate-type = ["cdylib"]
    
    上述配置确保了node-bindgen宏可以在编译时工作,并且指定库类型为兼容Node.js的动态链接库(cdylib)。

nj-cli.json(可选)

如果使用nj-cli工具进行更便捷的开发流程管理,可能会有一个配置文件nj-cli.json,但这不是必需的。这个配置文件一般用于定制nj-cli的行为,比如编译指令或观察模式的设置。


以上即是关于infinyon/node-bindgen项目的基本结构、启动和配置的简要介绍。实际操作中,开发者需结合官方文档和实践进行更深入的理解和应用。

node-bindgenEasy way to write Node.js module using Rust项目地址:https://gitcode.com/gh_mirrors/no/node-bindgen

  • 13
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祖崧革

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值