如何使用 `jinty/prerender-cloudfront`: 集成 Prerender.io 于 AWS CloudFront 完全指南

如何使用 jinty/prerender-cloudfront: 集成 Prerender.io 于 AWS CloudFront 完全指南

prerender-cloudfrontprerender.io cloudfront example middleware项目地址:https://gitcode.com/gh_mirrors/pr/prerender-cloudfront


1. 项目介绍

jinty/prerender-cloudfront 是一个示例项目,旨在展示如何在基于 AWS S3 存储的单页应用程序(SPA)上通过 CloudFront 实现 Prerender.io 的预渲染功能。通过这种方式,您可以优化搜索引擎和其他网络爬虫对您网站内容的索引,因为它们通常不执行JavaScript来呈现SPA的内容。本项目利用AWS Lambda@Edge,以简洁的方式处理请求路由,确保正确地将爬虫请求导向Prerender.io服务,同时保持其他流量的CloudFront缓存效率。

2. 快速启动

要迅速搭建并运行这个项目,遵循以下步骤:

步骤一:配置 AWS CloudFormation

  1. 克隆项目: 使用Git从此链接克隆仓库。

    git clone https://github.com/jinty/prerender-cloudfront.git
    
  2. 部署 CloudFormation 栈: 将prerender-cloudfront.yaml上传到您的AWS账户作为新的CloudFormation栈。记得在提示时输入您的Prerender.io令牌。

    aws cloudformation create-stack --stack-name MyPreRenderStack --template-body file://prerender-cloudfront.yaml --parameters ParameterKey=PrerenderToken,ParameterValue=YOUR_PRERENDER_TOKEN
    

步骤二:上传文件至S3

  1. 上传代码: 将code.jsindex.html 文件上传到由之前步骤创建的S3桶中。

  2. 设置公有读权限,以允许外部访问这些文件。

步骤三:测试

验证配置是否成功:

  • 预渲染页面: 使用特定的User-Agent模拟爬虫请求。

    curl -H 'User-Agent: Facebot' https://your-cloudfront-url/over/here
    
  • 非预渲染版本 对比测试:

    curl https://your-cloudfront-url/over/here
    

3. 应用案例和最佳实践

当实施此解决方案时,务必注意以下几点:

  • 缓存策略: 通过向CloudFront添加X-Prerender-Cachebuster自定义头,确保爬虫请求绕过缓存,而常规用户请求仍可享受高效缓存带来的加速。
  • Lambda@Edge: 确保两个Lambda@Edge函数正确划分职责,即入口处识别爬虫并标记,以及之后检查并转发给Prerender.io。
  • 性能监控: 监控Lambda@Edge的执行情况和CloudFront的缓存命中率,以优化性能。

4. 典型生态项目

虽然该项目专注于Prerender.io与AWS环境的集成,但在更广泛的生态系统中,可以结合其他服务如AWS Amplify、Serverless Framework或CircleCI实现自动化部署流程,进一步提升开发和运维效率。例如,可以使用Serverless Framework管理Lambda@Edge函数和CloudFormation资源的部署,或通过Amplify的工作流自动处理前端构建和部署到S3的过程。


本指南提供了一个清晰的路径来集成和利用jinty/prerender-cloudfront项目,帮助您改善SPA在搜索引擎中的可见性。在实践中不断调整和完善配置,以适应您的具体需求和环境。

prerender-cloudfrontprerender.io cloudfront example middleware项目地址:https://gitcode.com/gh_mirrors/pr/prerender-cloudfront

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆骊咪Durwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值