Face Recognition Attendance System 安装与配置指南
1. 项目基础介绍
Face Recognition Attendance System 是一个基于人脸识别技术的考勤系统。该系统可以自动识别人脸并记录考勤数据,旨在为教师和学生提供一个高效、可靠的考勤服务,减少手动处理错误。
该项目主要使用 Python 编程语言开发。
2. 关键技术和框架
- OpenCV: 用于图像处理和人脸识别的库。
- Pillow: 图像处理库,用于处理图像文件。
- Numpy: 用于数值计算的科学计算库。
- Pandas: 数据分析和操作库。
- yagmail: 用于发送电子邮件的库。
- Haar Cascade: 人脸识别算法。
- LBPH (Local Binary Pattern Histogram): 局部二值模式直方图,用于人脸识别。
3. 安装和配置准备工作
在开始安装之前,请确保您的计算机上已经安装了以下软件:
- Python 3.7
- PyCharm 或 VSCode(推荐的开发环境)
- Git(用于克隆项目)
安装步骤
克隆项目
首先,您需要从 GitHub 上克隆项目到您的本地计算机。打开命令行工具,执行以下命令:
git clone https://github.com/kmhmubin/Face-Recognition-Attendance-System.git
设置 Python 环境
- 打开项目文件夹,并在命令行中执行以下命令创建一个虚拟环境:
python -m venv env
- 激活虚拟环境(根据您的操作系统选择相应的命令):
对于 Windows:
.\env\Scripts\activate
对于 macOS/Linux:
source env/bin/activate
安装依赖
在虚拟环境中,使用以下命令安装项目所需的依赖:
pip install opencv-contrib-python numpy pandas Pillow yagmail
修改邮件配置
在运行项目之前,您需要修改邮件发送配置。在项目源码中,找到发送邮件的相关代码,并替换为您自己的邮件服务器设置和认证信息。
运行项目
在命令行中,切换到项目目录,并执行以下命令运行项目:
python main.py
按照上述步骤操作,您应该能够成功安装并运行 Face Recognition Attendance System。如果在安装过程中遇到任何问题,请仔细检查每一步是否正确执行,并确保所有依赖都已正确安装。