语义引导的零样本低光图像/视频增强教程

语义引导的零样本低光图像/视频增强教程

Semantic-Guided-Low-Light-Image-Enhancement This is the official Pytorch implementation for our paper "Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement." Semantic-Guided-Low-Light-Image-Enhancement 项目地址: https://gitcode.com/gh_mirrors/se/Semantic-Guided-Low-Light-Image-Enhancement

1. 项目介绍

本项目是论文《语义引导的零样本学习在低光图像/视频增强中的应用》的官方PyTorch实现。作者通过设计一种无需配对图像、无监督数据集及分割注释的语义引导的零样本低光增强网络(SGZ),旨在解决低光照条件下人眼与计算机视觉算法面临的挑战。该方法利用深度可分离卷积高效提取增强因子,并通过循环图像增强网络逐步改善低光图像,同时引入无监督语义分割网络以保持图像的语义信息,非常适合实时检测和分割等应用。

2. 项目快速启动

首先,确保你的环境中已安装Python、PyTorch以及必要的依赖库。以下是快速启动步骤:

安装依赖

pip install torch torchvision
pip install -r requirements.txt

下载项目

git clone https://github.com/ShenZheng2000/Semantic-Guided-Low-Light-Image-Enhancement.git
cd Semantic-Guided-Low-Light-Image-Enhancement

运行示例

为了运行一个基本的图像增强示例,你可以使用提供的脚本:

python example.py --input_image_path "path/to/your/low_light_image.jpg"

此命令将会处理指定的低光图像并输出增强后的结果。

3. 应用案例和最佳实践

对于最佳实践,建议先对模型进行预训练权重加载,这可以通过修改脚本来实现,确保从作者发布的资源中下载正确的模型权重文件。处理特定场景时,调整超参数以达到最佳的图像质量,同时考虑不同图像的光照条件和原始细节保留。

  • 预训练模型加载示例:

假设模型权重文件名为sgz_pretrained.pth,在代码中添加相应的权重加载逻辑。

4. 典型生态项目

虽然该项目本身就是围绕低光增强的一个专业工具,但其可以集成到更广泛的应用生态系统中,例如:

  • 实时监控系统:将此技术应用于监控摄像头的夜间视觉增强,提高监控效果。
  • 移动设备摄影:整合进智能手机相机应用,提升夜间拍摄能力。
  • 自动驾驶车辆:作为夜间或光线不足环境下的图像增强解决方案,增强感知系统的准确性。

开发者可以在自己的应用场景中探索与之结合的新方式,利用该技术改善基于图像的任何低光条件下的用户体验和系统性能。


请注意,上述代码和步骤仅作为指导性示例,具体实施时应参照项目最新的README文件或官方文档,因为软件更新可能会导致某些指令或路径发生变化。

Semantic-Guided-Low-Light-Image-Enhancement This is the official Pytorch implementation for our paper "Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement." Semantic-Guided-Low-Light-Image-Enhancement 项目地址: https://gitcode.com/gh_mirrors/se/Semantic-Guided-Low-Light-Image-Enhancement

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晏灵昀Odette

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值