pmdarima 项目推荐
项目基础介绍和主要编程语言
pmdarima 是一个专为填补 Python 在时间序列分析领域空白的统计库。该项目主要使用 Python 编程语言开发,旨在为 Python 用户提供类似于 R 语言中 auto.arima
功能的工具。
项目核心功能
pmdarima 的核心功能包括:
- 自动 ARIMA 模型选择:提供类似于 R 语言中
auto.arima
的功能,自动选择最优的 ARIMA 模型参数。 - 统计测试:包括平稳性和季节性测试,帮助用户判断时间序列数据的特性。
- 时间序列工具:如差分和逆差分,用于数据预处理。
- 数据转换和特征提取:支持 Box-Cox 变换、傅里叶变换等,增强模型的适应性。
- 季节性分解:帮助用户分析和处理季节性数据。
- 交叉验证工具:提供时间序列数据的交叉验证功能,确保模型的鲁棒性。
- 丰富的内置数据集:包含多个时间序列数据集,方便用户进行实验和学习。
- scikit-learn 风格的管道:支持类似 scikit-learn 的管道操作,便于模型的整合和生产化。
项目最近更新的功能
pmdarima 最近更新的功能包括:
- 版本 2.0.4:于 2023 年 10 月 23 日发布,包含多项 bug 修复和性能优化。
- 增强的文档和示例:更新了文档和示例代码,帮助用户更好地理解和使用库中的功能。
- 支持 Python 3.9+:现在支持 Python 3.9 及以上版本,提供更广泛的兼容性。
- 改进的安装体验:优化了 pip 和 conda 安装流程,确保用户能够更方便地安装和使用 pmdarima。
通过这些更新,pmdarima 进一步提升了其在时间序列分析领域的实用性和易用性,为用户提供了更强大的工具和更丰富的资源。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考