PMDArima 开源项目安装与使用指南

PMDArima 开源项目安装与使用指南

pmdarimaA statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.项目地址:https://gitcode.com/gh_mirrors/pm/pmdarima

一、项目目录结构及介绍

PMDArima(基于Python的多元自回归整合滑动平均模型)是一个强大的库,用于时间序列分析和预测。以下是其主要的目录结构概述:

pmdarima/
├── pmdarima/                    # 核心代码模块
│   ├── __init__.py
│   ├── arbiter.py               # ARIMA模型选择器
│   ├── auto_arima.py            # 自动ARIMA实现
│   ├── preprocessing/           # 数据预处理相关
│   ├── utils/                   # 辅助函数集合
│   └── ...                      # 其他核心组件
├── examples/                    # 示例代码,展示如何使用PMDArima
│   └── ...                      # 各种应用场景示例
├── tests/                       # 单元测试和集成测试代码
├── docs/                        # 文档资料,包括API参考等
├── setup.py                     # 安装脚本
├── README.md                    # 项目简介与快速入门
└── ...                          # 许可证、贡献指南等其他文件
  • pmdarima: 包含所有核心功能模块,如自动ARIMA算法的实现。
  • examples: 提供了丰富的应用案例,帮助新用户快速上手。
  • tests: 确保代码质量的测试套件。
  • docs: 详细文档,涵盖了使用说明、API文档等。

二、项目的启动文件介绍

在PMDArima项目中,没有直接的“启动”文件,因为这通常不是一个独立运行的应用程序。然而,如果你想要开始使用PMDArima进行时间序列分析,通常是从导入pmdarima.arima或者直接调用auto_arima函数开始的。以下是如何在一个简单的Python脚本中启动你的第一个PMDArima分析:

from pmdarima import auto_arima

# 示例数据,实际应用中应替换为你的时间序列数据
series = [your_time_series_data_here]

# 自动寻找最佳的ARIMA参数
model = auto_arima(series, start_p=0, start_q=0,
                    test='adf',       # use adftest to find optimal 'd'
                    max_p=3, max_q=3, # maximum values for p and q
                    m=1,              # frequency of series
                    d=None,           # let model determine 'd'
                    seasonal=False,   # No Seasonality
                    stepwise=True)    # Use Stepwise Approach

# 拟合模型并进行预测
model.fit(series)
forecast = model.predict(n_periods=5)
print(forecast)

三、项目的配置文件介绍

PMDArima本身并不直接提供一个全局的配置文件来让用户修改默认行为。配置主要通过函数调用时传递的参数进行定制。例如,上述auto_arima函数中的参数如start_p, max_q, test, 等允许用户根据具体需求调整模型搜索的范围和方式。

对于更复杂的设置或环境特定的配置,用户通常会在自己的应用程序中管理这些配置。例如,利用环境变量或自定义配置模块来设定Pandas显示选项、NumPy精度等,但这些并非PMDArima库直接提供的功能。

总之,PMDArima的设计强调的是代码级的灵活性和模块化,而不是依赖于外部配置文件进行大规模的全局设置。开发者应当通过阅读API文档和示例代码,灵活地调用库函数以满足个性化的需求。

pmdarimaA statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.项目地址:https://gitcode.com/gh_mirrors/pm/pmdarima

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强耿习Margot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值