IMavatar 项目使用教程
1. 项目目录结构及介绍
IMavatar 项目的目录结构如下:
IMavatar/
├── assets/
├── code/
│ ├── flame/
│ ├── libmise/
│ └── scripts/
├── preprocess/
├── .gitmodules
├── LICENSE
├── README.md
├── download_data.bash
└── environment.yml
目录介绍
- assets/: 存放项目相关的资源文件,如图片、模型等。
- code/: 核心代码目录,包含以下子目录:
- flame/: 存放 FLAME 模型的相关文件。
- libmise/: 用于提取 3D 网格的库。
- scripts/: 存放项目的脚本文件,如训练和评估脚本。
- preprocess/: 存放数据预处理的脚本和说明文件。
- .gitmodules: Git 子模块配置文件。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文件。
- download_data.bash: 下载预处理数据的脚本。
- environment.yml: Conda 环境配置文件。
2. 项目启动文件介绍
项目的启动文件主要位于 code/scripts/
目录下,其中最重要的启动文件是 exp_runner.py
。
exp_runner.py
该文件用于启动训练和评估任务。可以通过命令行参数配置不同的实验设置。
使用示例
-
训练:
python scripts/exp_runner.py --conf /confs/IMavatar_supervised.conf [--wandb_workspace IMavatar] [--is_continue]
-
评估:
python scripts/exp_runner.py --conf /confs/IMavatar_supervised.conf --is_eval [--checkpoint 60] [--load_path <path>]
3. 项目的配置文件介绍
项目的配置文件主要位于 confs/
目录下,其中最重要的配置文件是 IMavatar_supervised.conf
。
IMavatar_supervised.conf
该配置文件定义了训练和评估任务的各种参数,包括数据路径、模型参数、优化器设置等。
配置文件示例
[data]
dataset_path = /data/datasets
output_path = /data/experiments
[model]
flame_model_path = /code/flame/FLAME2020/generic_model.pkl
[training]
batch_size = 8
learning_rate = 0.001
num_epochs = 100
[evaluation]
checkpoint = 60
load_path = /data/experiments/checkpoint_60
其他配置文件
- environment.yml: 定义了项目所需的 Conda 环境配置。
- download_data.bash: 定义了下载预处理数据的脚本。
通过以上配置文件和启动文件,可以方便地进行项目的训练和评估任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考