TDengine数据库数据类型全面解析

TDengine数据库数据类型全面解析

TDengine TDengine is an open source, high-performance, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, Industrial IoT and DevOps. TDengine 项目地址: https://gitcode.com/gh_mirrors/tde/TDengine

时间戳类型详解

作为一款时序数据库,TDengine对时间戳的处理是其核心功能之一。时间戳在TDengine中具有以下重要特性:

  1. 标准格式:默认采用YYYY-MM-DD HH:mm:ss.MS格式,时间精度默认为毫秒级

  2. 灵活表示:支持多种时间表示方式:

    • 字符串格式:如2023-07-15 14:30:45.500
    • Epoch时间:从1970-01-01开始的毫秒/微秒/纳秒数
    • 相对时间:如NOW-2h表示2小时前
  3. 时间精度设置:在创建数据库时可指定时间精度:

    CREATE DATABASE db_name PRECISION 'ns';  -- 支持纳秒级精度
    
  4. 时间运算:支持丰富的时间单位:

    • 基本单位:b(纳秒)、u(微秒)、a(毫秒)、s(秒)、m(分)、h(小时)、d(天)、w(周)
    • 高级单位:n(自然月)、y(自然年)

完整数据类型体系

TDengine提供了丰富的数据类型支持,满足各种时序数据存储需求:

数值类型

| 类型 | 存储空间 | 取值范围 | 说明 | |------|---------|---------|------| | TINYINT | 1字节 | -128~127 | 微型整数 | | SMALLINT | 2字节 | -32768~32767 | 小型整数 | | INT | 4字节 | -2³¹~2³¹-1 | 标准整数 | | BIGINT | 8字节 | -2⁶³~2⁶³-1 | 大整数 | | FLOAT | 4字节 | 6-7位有效数字 | 单精度浮点 | | DOUBLE | 8字节 | 15-16位有效数字 | 双精度浮点 | | DECIMAL | 8/16字节 | 可自定义 | 高精度数值 |

字符串类型

  1. BINARY:单字节字符串,适合ASCII字符

    • 最大长度:65,517字节(数据列)
    • 使用时需指定长度,如BINARY(20)
  2. NCHAR:多字节字符串,支持中文等

    • 每个字符占4字节
    • 需指定字符数,如NCHAR(10)表示最多10个字符

特殊类型

  1. BOOL:布尔值,存储true/false
  2. JSON:仅标签列支持,用于存储结构化数据
  3. GEOMETRY:几何类型,支持点、线、面等空间数据
  4. VARBINARY:可变长二进制数据,支持\x格式输入

数据类型使用注意事项

  1. 行长度限制:单行数据总长度不超过64KB(注意BINARY/NCHAR等类型会额外占用2字节)

  2. 字符编码

    • 中文字符必须使用NCHAR类型
    • BINARY类型仅推荐存储ASCII可见字符
  3. 数值处理

    • 整数与浮点数根据表示方式自动判断
    • 大整数需注意边界,如9999999999999999999可能溢出
  4. DECIMAL类型

    • 语法:DECIMAL(precision, scale)
    • precision范围1-38,scale范围0-precision
    • 支持高精度计算,但需注意溢出问题

常量表示方法

TDengine支持多种常量表示:

  1. 数值常量

    • 整数:123(BIGINT类型)
    • 浮点数:123.451.2E3(DOUBLE类型)
  2. 字符串常量

    • 单引号:'text'
    • 双引号:"text"
    • 转义字符:\'\"
  3. 时间常量

    TIMESTAMP '2023-07-15 14:30:45.500'
    
  4. 布尔常量TRUE/FALSE

  5. 空值NULL

最佳实践建议

  1. 根据实际需求选择合适的时间精度,避免不必要的存储开销
  2. 中文等多字节字符务必使用NCHAR类型
  3. 大数值计算时考虑使用DECIMAL类型保证精度
  4. 二进制数据推荐使用VARBINARY类型
  5. 注意各种类型的长度限制,避免数据截断

通过合理使用TDengine丰富的数据类型,可以高效地存储和处理各种时序数据,充分发挥时序数据库的性能优势。

TDengine TDengine is an open source, high-performance, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, Industrial IoT and DevOps. TDengine 项目地址: https://gitcode.com/gh_mirrors/tde/TDengine

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滑思眉Philip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值