Dart Time Machine:一款强大的日期和时间处理库

Dart Time Machine:一款强大的日期和时间处理库

time_machineA date and time API for Dart项目地址:https://gitcode.com/gh_mirrors/ti/time_machine

项目介绍

Dart Time Machine 是一款专为 FlutterWebServer 平台设计的日期和时间处理库。它提供了对时区、日历、文化和格式化解析的支持,旨在替代 Dart 核心库中的日期和时间 API。Dart Time Machine 的目标是提供灵活、一致、可测试、清晰且易于使用的日期和时间处理解决方案。

项目技术分析

Dart Time Machine 的核心技术架构基于 Noda Time,这是一个在 .NET 生态中广泛使用的日期和时间处理库。通过移植 Noda Time 的核心功能,Dart Time Machine 在 Dart 平台上实现了类似的功能和性能。

主要技术点:

  • 时间精度:支持纳秒级的时间精度,相比 Dart 核心库的微秒精度,提供了更高的精确度。
  • 时区支持:提供了 DateTimeZoneZonedDateTime 等类,支持复杂的时区转换和处理。
  • 文化支持:通过 Culture 类,支持不同地区的日期和时间格式化及解析。
  • 平台一致性:确保在 Flutter、Web 和 Server 平台上提供一致的 API 和功能。

项目及技术应用场景

Dart Time Machine 适用于多种应用场景,特别是在需要精确时间处理和复杂时区转换的项目中表现尤为出色。以下是一些典型的应用场景:

  • 全球化应用:支持多语言和多时区的应用,如国际化的电子商务平台、全球协作工具等。
  • 日历应用:需要处理复杂日历逻辑的应用,如日程管理、会议安排等。
  • 服务器应用:在服务器端需要精确时间处理的应用,如日志记录、数据同步等。

项目特点

1. 灵活性

Dart Time Machine 提供了多种时间表示方式,包括 InstantLocalTimeLocalDateLocalDateTime 等,能够满足不同场景下的时间处理需求。

2. 一致性

无论是在 Flutter、Web 还是 Server 平台上,Dart Time Machine 都能提供一致的 API 和功能,确保开发者无需担心平台差异。

3. 可测试性

Dart Time Machine 的设计使得日期和时间相关的代码易于测试,开发者可以轻松编写单元测试来验证时间处理逻辑的正确性。

4. 清晰易用

API 设计简洁直观,开发者可以快速上手并高效地处理日期和时间相关的任务。

5. 高性能

通过纳秒级的时间精度支持和高效的时区转换算法,Dart Time Machine 在性能上表现优异,能够满足高并发场景下的需求。

结语

Dart Time Machine 是一款功能强大且易于使用的日期和时间处理库,适用于各种复杂的时间处理需求。无论你是开发 Flutter 应用、Web 应用还是服务器端应用,Dart Time Machine 都能为你提供一致且高效的时间处理解决方案。赶快尝试一下,体验其带来的便利和高效吧!


项目地址Dart Time Machine

文档Dart Time Machine 文档

time_machineA date and time API for Dart项目地址:https://gitcode.com/gh_mirrors/ti/time_machine

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈韬淼Beryl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值