3D-Face-GCNs 项目使用教程
1. 项目的目录结构及介绍
3D-Face-GCNs/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ ├── gcn_model.py
│ └── loss.py
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── config/
│ └── config.yaml
├── README.md
└── requirements.txt
- data/: 存储项目所需的数据,包括处理后的数据和原始数据。
- models/: 包含项目的模型定义,如
gcn_model.py
定义了图卷积网络模型,loss.py
定义了损失函数。 - scripts/: 包含项目的脚本文件,如
train.py
用于训练模型,evaluate.py
用于评估模型。 - config/: 包含项目的配置文件
config.yaml
,用于设置训练和评估的参数。 - README.md: 项目说明文档。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
scripts/train.py
train.py
是项目的启动文件之一,用于训练 3D 人脸识别模型。以下是其主要功能:
- 加载配置文件
config.yaml
。 - 初始化数据加载器和模型。
- 定义训练循环,包括前向传播、计算损失、反向传播和参数更新。
- 保存训练过程中的模型权重和日志。
scripts/evaluate.py
evaluate.py
是另一个启动文件,用于评估训练好的模型性能。主要功能包括:
- 加载配置文件
config.yaml
。 - 加载预训练的模型权重。
- 对测试数据进行前向传播,计算评估指标。
- 输出评估结果。
3. 项目的配置文件介绍
config/config.yaml
config.yaml
是项目的配置文件,用于设置训练和评估的各种参数。以下是一些关键配置项:
- data_path: 数据文件的路径。
- model_params: 模型的参数,如输入维度、隐藏层大小等。
- train_params: 训练参数,如学习率、批大小、训练轮数等。
- eval_params: 评估参数,如评估数据集路径、评估指标等。
示例配置:
data_path: "data/processed"
model_params:
input_dim: 35709
hidden_dim: 256
output_dim: 80
train_params:
learning_rate: 0.001
batch_size: 32
num_epochs: 100
eval_params:
eval_data_path: "data/processed"
eval_metrics: ["accuracy", "loss"]
通过修改 config.yaml
文件,可以灵活调整项目的运行参数,以适应不同的训练和评估需求。